
Vol.:(0123456789)

Computational Statistics
https://doi.org/10.1007/s00180-024-01535-9

SOFT WARE ARTICLE

BARMPy: Bayesian additive regression models Python
package

Danielle Van Boxel1,2

Received: 6 April 2024 / Accepted: 23 July 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
We make Bayesian additive regression networks (BARN) available as a Python
package, barmpy, with documentation at https:// dvbun tu. github. io/ barmpy/ for
general machine learning practitioners. Our object-oriented design is compat-
ible with SciKit-Learn, allowing usage of their tools like cross-validation. To ease
learning to use barmpy, we produce a companion tutorial that expands on refer-
ence information in the documentation. Any interested user can pip install
barmpy from the official PyPi repository. barmpy also serves as a baseline Python
library for generic Bayesian additive regression models.

Keywords Machine learning · Python · MCMC · Software

1 Introduction

We implement Bayesian additive regression networks (BARN) as a software pack-
age, barmpy (for Bayesian Additive Regression Models in Python). This algorithm
is another approach to the general regression problem of finding some function,
f (xi) , to approximate a noisy relationship, yi = u(xi) + �i , where �i ∼ N(0, �) is a
noise term and u(xi) represents some true underlying function. BARN works by sam-
pling from a posterior distribution on ensembles of neural networks (NNs), similar
to Bayesian Additive Regression Trees (BART) (Chipman et al. 2010), but with a
different backbone. We cover some of the necessary practical mathematical back-
ground in Sect. 2, but here we focus more on implementation designs for the library.

New methods in machine learning and broader mathematics arise all the time,
but they are not always readily accessible to data science practitioners (Patel et al.
2008). Part of the explosion of machine learning was the development of libraries

 * Danielle Van Boxel
 vanboxel@arizona.edu

1 Applied Math GIDP, University of Arizona, Tucson, AZ, USA
2 Data Diversity Lab, University of Arizona, Tucson, AZ, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-024-01535-9&domain=pdf
http://orcid.org/0009-0002-4091-9858
https://dvbuntu.github.io/barmpy/

 D. Van Boxel

like Scikit-Learn (Pedregosa et al. 2011), TensorFlow (Abadi et al. 2015), and Keras
(Chollet et al. 2015). Such tools not only freed data scientists from having to imple-
ment machine learning algorithms manually, they also provide detailed documenta-
tion with examples. This kind of broad support is the difference between a research
algorithm and an accessible library.

Making barmpy accessible means more than publishing code. We integrate
tightly with existing popular Python machine learning libraries like Scikit-Learn
(and TensorFlow as an alternative), described in more detail in Sect. 3. This includes
following those libraries’ best practices regarding complete documentation and
example tutorials. We even take the algorithmic improvement beyond Scikit-Learn
by implementing custom model callbacks, such as for early stopping, detailed in
Sect. 3.5. To show barmpy’s utility and limitations, we conduct benchmark testing
and a small case study. Part of this is computation time information, as such metrics
are often a concern for machine learning practitioners. We note that computation
time is itself an accessibility issue; large language models like ChatGPT are not gen-
erally trainable to users with typical hardware resources (Ouyang et al. 2022). Mak-
ing a new method like BARN usable in terms of speed, capability, and understand-
ability makes barmpy more than an algorithm.

2 Mathematical background

Whereas we describe the methodology of BARN in detail in Van Boxel (2024), here
we review key points, as relevant to potential users, of BARN as implemented in
barmpy. Recall that the related method, BART, is made of an ensemble of deci-
sion trees which sum to the prediction (Chipman et al. 2010). While structurally
similar to a random forest (Breiman 2001), BART is distinct in that we train it by
sampling from the posterior distribution of trees using Markov Chain Monte Carlo
(MCMC) (Chipman et al. 1998). By carefully setting transition, prior, and evidence
probability functions, BART can calculate an MCMC acceptance ratio for accepting
a changed tree. After many iterations over all the trees, we realize convergence to
the desired posterior. BARN works similarly to this but uses neural networks in the
ensemble rather than decision trees. From an algorithmic (and software design) per-
spective, however, we need to define the MCMC steps of model proposal, transition,
and posterior.

BARN, like BART, is an ensemble of smaller models. BARN, however, uses an
ensemble of neural networks instead of decision trees. To train these neural net-
works, we sample from a posterior distribution on the space of neural networks. For
simplicity, consider a single network, M. The posterior distribution on M involves
a Bayesian prior, P(M), which incorporates our prior beliefs about the network
(e.g. how many neurons should it have?). The posterior also includes the evidence,
P(Y|M, X), which is the likelihood of seeing the target data, Y, given the model, M,
and input data, X. Intuitively, this measures how well M fits the given data. To sam-
ple from this posterior, we create a Markov Chain that has this posterior as the sta-
tionary distribution. As in Chipman et al. (1998), creating such an MCMC involves
proposing a new model, M′ , from the old one using some transition probability,

BARMPy: Bayesian additive regression models Python package

q(M,M�) . Then we compute the posterior probability of both old and new models
to find the acceptance ratio, A(M,M�) in Eq. (1). This ratio is the probability that we
accept M′ as the replacement for M. After many iterations, this process converges to
the desired posterior stationary distribution.

Consider the transition probabilities, which in a way, encapsulate the model pro-
posal. In BARN, as in BART, we apply Gibbs sampling to ensembling, proposing,
training, and potentially accepting a single neural network at a time. BARN allows
only 2 transitions: adding one neuron or subtracting one neuron. Therefore, we cap-
ture this in a single parameter, p, the probability of adding a neuron to the existing
network. This proposes the new network size, but to fully specify that network, we
also need model weights. That involves training the network with standard optimi-
zation techniques, again as described in Van Boxel (2024). The final proposed new
network in a step is then the result of this procedure.

As noted, to compute the MCMC acceptance ratio, we also need the posterior
probability of the old and new networks. Note that in BART, this calculation is the
closed form of an integral over the weights (Chipman et al. 2010). In BARN, this
is an approximation, so we only need a closed form for the prior and evidence. Our
default prior depends only on the number of neurons and uses a discrete Poisson dis-
tribution. And finally, the evidence component of the BARN posterior for model k is
the likelihood of the target residual value, P(Rk|Mk,X) , where Rk = Y −

∑
j≠k Mj(X)

and Mj(X) is the jth neural network in the ensemble applied to input X. This likeli-
hood assumes a normal distribution of errors (and sampled � value for each MCMC
step). The prior times this evidence gives us the posterior, which then multiplied by
the transition proposal probability, contributes to the acceptance ratio. This provides
all the key aspects of a BARN model.

Consider a small example with three networks in the ensemble: M1,M2, and
M3 . We wish to propose a possible replacement for M3 , so first we fix M1 and M2 .
Then we subtract their contribution to the model prediction to obtain the residual,
R3 = Y −M1(X) −M2(X) . Now we transition M3 to potential new model, M′

3
 , by

using the transition probability, q(M3,M
�
3
) . In the example Fig. 1, M′

3
 has one less

neuron than M3 . With the architecture of M′
3
 specified, we find the approximate

maximum likelihood estimate for the weights, w3 ≈ argmaxw3
P(R3|M3,X) by using

gradient descent or other suitable optimization routine (Kingma and Ba 2014). After
training M′

3
 , we are ready to compute the posterior of both M3 and M′

3
 on the lat-

est residual and use those posteriors to obtain the acceptance ratio, A(M3,M
�
3
) . In

the example in Fig. 1, A(M3,M
�
3
) = 0.42 , and the random number generated is less

than this, so we accept the new assignment M3 ← M′
3
 . Fixing M3 , we can then turn

to M1 and repeat this process. We keep cycling through each network in the ensem-
ble, accepting or rejecting transitions, until we converge to the stationary posterior
distribution.

As briefly mentioned, barmpy users can supply their own parameters or meth-
ods for inputs like the prior distribution. Section 3.4 describes in detail how to

(1)A(M,M�) = min

(
1,

q(M|M�)P(Y|M�,X)P(M�)

q(M�,M)P(Y|M,X)P(M)

)

 D. Van Boxel

use Scikit-Learn’s own cross-validation with barmpy. And because the library is
object-oriented, data scientists familiar with Python and Scikit-Learn can quickly
subclass our BARN or NN classes to their own specifications. A good use case for
this would adapt BARN for binary classification by changing a few methods that
control the MCMC process. So even if barmpy basic methods and defaults are not
directly applicable, they can serve as a starting point for rapid prototyping.

3 Library features

In developing barmpy, we seek not only to implement BARN for regression and
classification, but also to create an accessible library for generic BART or BARN-
like algorithms. Part of that means weighing different programming language
options, not only for ease of our own coding, but for future open-source development
as well. Additionally, we explore some of the choices behind the overall object-ori-
ented design. This design includes tight integration with Scikit-Learn (Pedregosa
et al. 2011), which multiplies barmpy’s capabilities. Next, we note the importance
of not only documentation, but fully worked tutorials for practitioners. And finally,
we discuss some practical concerns like distribution on PyPi (PyPi Maintainers
2023) and GitHub (Escamilla et al. 2022). Our goals in developing barmpy go
beyond merely implementing accurate statistics.

3.1 Related software

We choose to develop barmpy in Python, even though most BART packages are
written in R. The original researchers into BART are responsible for multiple pack-
ages in R, including variants (Chipman et al. 2022; McCulloch et al. 2024), gener-
ally available on the Comprehensive R Archive Network (CRAN) (Hornik 2012).
Other BART-derived methods like MOTR-BART also develop in R (Prado et al.
2021). While BARN is related to BART, we intend barmpy to be of general use not

Fig. 1 Toy example showing acceptance of new M′
3
 proposed transition as an MCMC step toward con-

vergence to the posterior distribution in BARN

BARMPy: Bayesian additive regression models Python package

only to statisticians, but to professional data scientists as well. And these data scien-
tists almost overwhelmingly choose Python, partly due to its broader ecosystem of
libraries, documentation, and developer tools (Srinath 2017). Therefore, we develop
barmpy in Python to reach the data scientists where they are.

There are a few BART implementations in Python, which we briefly review
here. BARTPy uses a high-level SciKit-Learn style (Pedregosa et al. 2011) model
interface, though it hasn’t seen activity in several years (Coltman 2022). A more
up-to-date BART library in Python is PyMC-BART (Quiroga et al. 2022). PyMC-
BART, however, focuses on probabilistic programming within the PyMC framework
Abril-Pla et al. (2023), which lacks tight SciKit-Learn integration. A library which
implements BART under active maintenance and with SciKit-Learn principles is
ISLP (James et al. 2023). This is actually the code companion to a textbook, but
it uses SciKit-Learn classes like BaseEstimator in a direct imperative style of
programming familiar to those with SciKit-Learn and NumPy (Harris et al. 2020)
experience. We keep these Python BART libraries’ strengths and limitations in mind
when developing barmpy.

SciKit learn is particularly relevant because it implements a huge variety of
machine learning algorithms with a standardized object-oriented application pro-
gram interface (API) (Pedregosa et al. 2011). It has modules for many popular
machine learning approaches such as linear regression, random forests, neural net-
works, and more. Further, SciKit-Learn provides variable transformation routines
which are especially helpful when including a model within a SciKit-Learn pipe-
line with pre- and post-processing. While other Python libraries like statsmod-
els provide detailed statistics in a manner similar to R packages (Seabold and
Perktold 2010), Scikit-Learn focuses on practical usage and extensibility. For exam-
ple, statsmodels requires some workarounds to enable using models for pre-
diction on new data, but every Scikit-Learn Estimator has a built-in predict
method for exactly this. Further, Scikit-Learn implements a method for cross-val-
idated hyperparameter tuning; anything that subclasses a Scikit-Learn Estima-
tor may tune this way. Much like ISLP, barmpy inherits from these SciKit-Learn
classes. And therefore, barmpy automatically benefits from the entire Scikit-Learn
ecosystem.

3.2 Regression and binary classification

As our BARN ensemble is made of many small neural networks, our fundamental
class is NN, which uses the Scikit-Learn primitive, MLPRegressor (for “Multi-
Layer Perceptron”, i.e. a fully connected neural network). A short example of
training BARN is in Snippet 1. Our class includes helper methods to compute
the various MCMC log-likelihood and prior probabilities given a network, as this
is done on a per-network level under Gibbs sampling. There are also routines to
quickly save or load results, and handle the weight donation to other neural net-
works when transitioning. Building an ensemble of these NN objects, we have the
general BARN class. This is more than a list of NN objects; it includes parameters
to customize the algorithm priors. Further, it has a critical method, BARN.fit,

 D. Van Boxel

which implements the full BARN procedure with Gibbs sampling. While not par-
allelized (as models must be fit sequentially), it does avoid duplication of com-
putation by caching residual values and only updating them with the networks
that have changed. This turns an O(N) operation, where N is the number of net-
works in the ensemble, into an O(1) (i.e. constant time) operation. And like NN,
this class has some helper methods for features like Monte Carlo batch means
analysis and built-in visualization of key results using matplotlib (Hunter
2007). From a user perspective, they need only instantiate a BARN object, setup
the Bayesian parameters, and supply data for training.

BARN for classification works similar to regression. Currently, the library sup-
ports binary classification with targets encoded as yi ∈ {0, 1} . In code, one swaps
BARN_bin for BARN. After training, BARN_bin’s predictions lie in (0, 1), and
represent the model’s predicted probability of the true class being 1, as in a pro-
bit model. If desired, one can directly produce the model z-scores which equate to
these probabilities. For usage, we again offer a small example in Snippet 1. Inter-
nally, BARN_bin inherits from the same base class as BARN, BARN_base, which
implements most of the sampling logic. Because of this, BARN_bin uses the same
MLPRegressor (not MLPClassifier) for each component of the ensemble.
Options like prior distribution mean value are identical, making it easy to switch
between these BARN modes for different problems as needed.

We note that BARN does not yet support training on data like counts nor mul-
ticlass classification. There exist extensions to BART which cover these cases, but
they require some additional care when computing the MCMC acceptance ratio

BARMPy: Bayesian additive regression models Python package

(Linero 2022). Adapting those types of data to BARN will require additional analy-
sis and implementation.

Our BARN implementation comes with reasonable defaults for ease of use by
scientific practitioners. We recommend the NN growth transition probability be set
to p = 0.4 . This mildly encourages the algorithm to test relatively small networks,
mitigating the chance of a single network dominating the ensemble. Similarly, we
advise setting the network size prior distribution mean to � = 1 or another small
value to again encourage networks to be individually weak learners. If one is using
BARN for pure architecture search (i.e. only a single network in the ensemble),
however, then � should be larger to accommodate more complexity. Additionally,
users can supply their own generic probability mass function if they wish to control
the prior more carefully. The number of networks in the ensemble, as mentioned, is
itself a settable parameter. We default to 10 as this balances ensembling to improve
generalization with increased computation time from additional network training.
For the neural network training itself, parameters like learning rate and weight regu-
larization penalties are more problem-dependent. We suggest learning rate lr = 0.01
and L1L2 regularization r = 0.01 , but note that users should experiment with these
particular settings. Additional details on tweakable parameters are available in the
BARN documentation (Van Boxel 2023).

3.3 Improving software accessibility

To further ease usage and additional development, we have adopted several more
general software engineering principles. First, being a Python library, we natu-
rally distribute barmpy as a package on PyPi.org (PyPi Maintainers 2023). This
enables hassle-free installation for new users. Next, as noted earlier, we main-
tain all development history in a Git repository on Github. This repository also
logs issues, which can be reported bugs or plans for future features that users can
explore. To ensure functional correctness even in the face of seemingly unrelated
changes, we run a suite a unit tests with every commit to the main branch. Each
test runs a small chunk of code using barmpy as a library and compares the out-
put to a known good result. When a test fails, we can see exactly where and if this
needs attention. In addition to assisting with development, unit tests also act as
examples for new users. Beyond such rigorous tests, we also wrote and deployed
a complete walkthrough via an R Markdown (Baumer and Udwin 2015) script.
This walkthrough describes a problem end-to-end, from generating data to run-
ning BARN and interpreting the results. Further, because this is in R Markdown,
users can run the code chunks themselves (by knitting the script or copying
it into a Python terminal). Example output is provided, as in Fig. 2, for users to
verify their results, thereby ensuring they can learn how to apply barmpy on
their own. Finally, when users or developers need more details, they can review
the low-level documentation we developed using Python’s Sphinx library (Brandl

 D. Van Boxel

2021). This documentation is in part automatically generated from the BARN
Python docstrings themselves, though we include additional mathematical infor-
mation at an appropriate level, such as for doing cross-validation on BARN with
Scikit-Learn. The source documents are part of the repository itself, but they are
also online as a Github Pages website (Van Boxel 2023). These tools enable new
users and developers to quickly understand, use, and improve on the BARN algo-
rithm for data science projects.

3.4 Cross‑validated tuning via Scikit‑Learn

BARN is implemented as a sklearn class, meaning we can use standard
sklearn methods like GridSearchCV to tune the hyperparameters for the
best possible result. Note that each additional parameter choice increases the
computation time multiplicatively, so one should be mindful when considering
the number of possible hyperparameter values.

All arguments to BARN which accept different values can be tuned this way.
In Snippet 2, we show an example that tunes the prior distribution mean value
parameter, � . Also, when using a method like RandomizedSearchCV, one
should be careful to supply appropriate distributions. Here, l takes discrete val-
ues, so we specify a discrete Poisson probability distribution to sample from.
Note, however, that this distribution is only for cross-validation sampling of the
prior parameters, not for BARN to use in internal MCMC transitions.

Fig. 2 Example tutorial output showing BARN may outperform OLS and even a much larger neural net-
work. Note this example uses no cross-validated tuning

BARMPy: Bayesian additive regression models Python package

3.5 Early stopping approaches

In machine learning, even when training some model over many iterations, it is
common to stop the process early under some conditions. Typically, these involve
checking some error metric against held-out validation data (Gençay and Qi 2001).
If the metric fails to improve, then one stops training in order to avoid overfitting to
training data. Given the MCMC-based training process of BARN, however, there
are several possibilities for such metrics.

In addition to the standard approach of checking validation error, we explore
alternatives measuring stability in the posterior. As the MCMC posterior is some
probability distribution, we can estimate it from our samples once we reach conver-
gence. If this estimate is stable, then we infer that convergence has been reached and
we can stop. One reasonable metric is the earth-mover distance (also known as the
one-Wasserstein metric (Solomon et al. 2014)) from one estimate of the distribution
to the next. In our case, this means evaluating the distribution of the number of neu-
rons in each network of the ensemble and setting a change threshold. Though some
researchers explored similar ideas (Durmus and Moulines 2015), they focused more
on mixing rate. A similar though simpler heuristic is to simply check how many

 D. Van Boxel

proposed model transitions BARN accepted in the previous iteration. If the model
has converged, then the error rates are already low and it will be relatively difficult
to dislodge an existing model. Therefore, so long as a model continues to accept
transitions, it advances to the next MCMC iteration, as Snippet 3 details in Python.
By default, this method stops if less than 20% of the networks in the ensemble tran-
sitioned. A final, more rigorous alternative is to check not just the stationarity of the
MCMC calculation, but the complete convergence of batch means as well. The rela-
tive fixed-width stopping rule constructs a t-stat to check recent convergence of rela-
tive batch means, implying stationarity (Flegal and Gong 2015). These are all rela-
tively quick to implement, so we make them available to users as a model callback.

To assist users developing their own callback, or for general model evaluation,
barmpy internally tracks a few variables at each MCMC iteration. Snippet 3 uses
self.ntrans_iter, which counts how many proposed transitions were

accepted for each iteration. Additionally, let �i =

�
∑

i

(Yi−
∑

k Mk(Xi))
2

N
 be the root

mean squared error (RMSE) over the N validation data points. Then self.phi
contains this validation RMSE for each iteration. Similarly, self.actual_num_
neurons tracks the number of neurons in each network in the ensemble, and
self.sigma maintains a list of the current � estimate of the noise. These arrays of
variables provide information about a given BARN run’s training process and serve
as inputs to custom callbacks.

In practice, however, we expect most data scientists to use the more common
check on the current model validation error than these other methods like Snippet 3.
In various evaluations, we found most methods provide similar results (about a 20%
reduction in computation time), with validation error anecdotally being the most sta-
ble. We still expose them, not only for their nominal purpose, but also as examples
of generic custom model callbacks that can affect the training procedure.

BARMPy: Bayesian additive regression models Python package

4 Evaluation

To see in what contexts barmpy is most useful, we analyze its error and tim-
ing metrics in different situations. We focus on both a small case study with data
from an active problem in biology as well as a review of computation time on dif-
ferent synthetic data sets.

Before discussing these results, we quickly note how Van Boxel (2024) covers
a broad range of real and synthetic data sets to show where BARN is most effec-
tive. In particular, their analysis of specific synthetic data sets provides some of
the most insight. Without repeating the analysis there, we note that BARN does
better than other methods on problems where there is a strong functional nonlin-
ear relationship like Friedman F2 or F3. So BARN may be practically appropriate
as an approximation to a complex system that cannot be easily directly modeled.

4.1 Case study: isotope modeling

While Van Boxel (2024) runs BARN on a wide variety data sets, we focus here
on one case study on clumped isotope paleothermometry. The modeling problem
itself is to predict carbonate clumped isotope thermometry, Δ47 , as a function of
temperature (Eiler and Schauble 2004). This is a calibration process; in practice
one uses Δ47 as a surrogate for historical temperature that was not measured (and
therefore something invertible like OLS is typically preferable). The ecological
details are beyond the scope of this paper, but there are various studies on this
topic (Eiler and Schauble 2004; Román Palacios et al. 2022; Petersen et al. 2019).
A recent study (Román Palacios et al. 2022) demonstrated the effectiveness of a
Bayesian least squares approach to this data. Such a method uses a linear model
as in OLS, but employs priors on the estimated parameter values informed by ear-
lier studies. BARN also uses priors but on the model structure (by affecting the
size of learned networks) rather than the parameters directly.

As this data set is in a single variable, we can visually inspect the relationship
between temperature and Δ47 . Figure 3 plots Δ47 against the inverse of squared
temperature, showing a strong linear relationship, though with some spread.
Scientists training models on this data need to be able to invert the model (i.e.
change Δ47 = f (T) into T = f −1(Δ47)) to predict historical temperatures. So even if
BARN outperforms other approaches, it will likely not replace linear methods on
this particular problem. We focus on BARN’s performance on the data as an area
of active research.

In Fig. 4 we inspect results on this “isotope” data set, and we see that BARN
performs well relative to the other methods. Note that the output has been rescaled
from the original for this calculation. BARN produces very similar results to
OLS (test RMSE about 0.298, 4% less than the next-best method’s error). And,
BARN works nearly as well without cross-validated tuning as with (less than
0.1% test RMSE difference). This performance, even without tuning, does require
an increased computational cost, as we shall see in Sect. 4.2. We caution, again,

 D. Van Boxel

Fig. 3 Apparent linear relationship between temperature and Δ
47

Fig. 4 Absolute RMSE boxplot
of various methods on the
isotope data set. BARN (with or
without tuning) and OLS have
similar profiles, while other
methods are significantly worse
(but still rather accurate; note
log scale)

BARMPy: Bayesian additive regression models Python package

that our BARN analysis here is for demonstration only, as this particular problem
requires invertibility.

The state-of-the art in this area uses Bayesian linear models. We show Fig. 5 to
quickly compare existing methods with our approaches on a specific data split of
interest (hence why there are only point estimates of the error). Further, we note
that these are on the original data scales, hence why all the errors appear so much
smaller than in Fig. 4. BARN appears to be in the same class of error levels as the
best linear approaches. BARN’s error is only about 1% higher than the best method
(and even closer for tuned BARN). This is especially interesting because the other
nonlinear methods we tested (the big NN and BART) actually perform significantly
worse than OLS and BARN when not using cross-validated tuning. It is possible
that BARN is able to simplify to an OLS-like model that is appropriate for this prob-
lem (which has a single explanatory variable) where other nonlinear methods would
require additional training data for such a reduction. This demonstrates some of the
adaptability and broad applicability of BARN.

4.2 Computational costs of BARN

While Van Boxel (2024) described BARN’s performance in terms of error, here we
consider the computational cost of running it. There can be a trade-off here. Some
problems, like targeted display advertising (Shah et al. 2020), benefit from speed of
computation (at the expense of accuracy); others, like medical imaging (Aggarwal

Fig. 5 Testing RMSE point estimates (only a single split performed) on Δ
47

 testing data for various
methods. BARN performs similarly to linear methods (Román Palacios et al. 2022) even when a big NN
and BART perform significantly worse. Note that methods used in this study (top six models) reserve
25% of the training data for validation (hence why “OLS_VALID” is separate from “OLS”)

 D. Van Boxel

et al. 2021), require very low prediction error and are willing to invest computa-
tional resources to achieve it. To assess BARN on this axis, we consider the data sets
described in Van Boxel (2024). While these data sets are modest in size (about 1000
data points and 10 features), they are sufficient to realize the differences in computa-
tion times, in seconds, shown in Table 1. These times do vary across runs, but not to
the extent of the order of magnitude differences in times across methods.

In Fig. 6, we see the relative computation times for our various methods on all
data sets. OLS, being only linear algebra, is always the fastest (hence the relative
time of 1). Next, training a single neural network with gradient descent takes 10–100
times as long (still less than a second on any given problem). BART is solidly 100
times slower than OLS, about 1 s of real time. Plain BARN is about 10,000 times
slower than OLS, taking on the order of 10 s to a 1 min on a given problem. This
is primarily due to the necessity of training new small neural networks for all the

Table 1 Mean training time in seconds over 40 trials of various methods on different data sets

Dataset BARN BARN CV BART BART CV Big NN Big NN CV OLS

cali small 70.315 3051.940 0.821 240.575 0.149 29.332 0.002
concrete 76.898 3418.810 0.494 148.01 0.066 20.202 0.002
crimes 270.220 14175.800 0.905 258.248 0.183 30.963 0.011
diabetes 16.364 2231.910 0.177 73.3536 0.035 9.663 0.002
fires 33.866 3302.060 0.168 78.0964 0.036 10.802 0.002
isotope 7.521 526.695 0.350 136.935 0.032 6.532 0.001
mpg 30.834 1923.640 0.170 66.4122 0.031 8.533 0.002
random 21.660 1117.350 0.574 146.616 0.039 15.839 0.002
wisconsin 58.132 3734.430 0.120 48.0919 0.043 7.964 0.002

Fig. 6 BARN is comparable in time to other methods with cross-validation

BARMPy: Bayesian additive regression models Python package

MCMC iterations. While each one is very fast (close to 10 times faster than the sin-
gle big network), doing this for 200 MCMC iterations is a significant cost. BART
avoids this cost because it does not “train” in a traditional sense (i.e. it does not set
weights with the standard CART procedure), so the MCMC iterations are not as
computationally intense. On the face of it, BARN seems like it is very slow.

When we consider the methods with cross-validated hyperparameter tuning, how-
ever, we see that BARN is actually time-competitive with the other nonlinear meth-
ods. Those methods are on the order of tens of seconds for this data. Now, from
earlier studies (Van Boxel 2024), we know that plain BARN is nearly as accurate
as BARN with tuning. Across real data benchmarks in that study, BARN without
tuning had only 0.2% higher median relative test RMSE than BARN with tuning.
In situations where extensive computational resources are available or minimizing
error as much as possible is critical, tuning BARN with cross-validation can provide
a modest improvement over untuned BARN.

Yet even untuned BARN still produces lower error than BART or the big neural
network even when those methods are tuned. Looking at Fig. 6 again, we see that
plain BARN takes about the same amount of relative time as other methods when
those are tuned. Those methods benefit significantly from such tuning, whereas
BARN may be adaptable even without it. For situations requiring low testing error
in regression, BARN is time-competitive with other nonlinear algorithms.

We did explore various speedups to BARN. Recall that we chose to implement
BARN in a Scikit-Learn compatible way, including using their MLPRegressor
class. While this is convenient, it may not be the fastest NN implementation. So we
also implemented BARN using TensorFlow-based neural networks, including train-
ing these NNs on GPUs (Abadi et al. 2015). For large neural networks, GPUs often
provide a 5 times or better speedup from parallelism (Lind and Pantigoso Velasquez
2019), but with BARN, we found just the opposite. Because BARN typically uses
tiny neural networks, these map poorly to GPUs. Significant time, relative to the
computation cost, is lost simply moving data between CPU and GPU. Another
improvement we tried, however, was more helpful. Initially, we trained BARN net-
works using typical gradient-descent style solvers common in machine learning
and TensorFlow. But since we were using Scikit-Learn, we also had easily avail-
able quasi-Newton methods like BFGS (Nocedal and Wright 1999). At the scale of
networks and data sets considered, we found switching away from gradient descent
provided a 2–4 times speedup. Understanding that this is problem dependent, how-
ever, we enable setting this parameter in the function and provide a sane default
that selects based on network size. Such techniques provide BARN with some speed
enhancements, though more research in this area is needed.

5 Conclusion

We reviewed the design and capabilities of the new Python package, Bayesian Addi-
tive Regression Models in Python (barmpy). In addition to the favorable results of
lower error rates on benchmark data seen in Van Boxel (2024), we found barmpy
to be fast enough on relevant problems. While it is an order of magnitude slower

 D. Van Boxel

than BART, BARN does not need hyperparameter tuning to do well, making it gen-
erally time-competitive. Still, additional research into faster implementations of
BARN would be beneficial. TensorFlow wasn’t able to improve speeds, but another
linear algebra library, one tuned for many small matrices, might be appropriate. Or,
BARN may benefit from an algorithmic change. For example, rather than learning
weights via the neural network training procedure, we could sample them directly as
part of the MCMC process. This has the downside of ignoring existing optimization
approaches, but something similar works for BART, so it may work here. Beyond
direct metrics, we also emphasized the importance of accessibility for barmpy. This
is why we chose to develop it in Python with tight integration with Scikit-Learn.
We meet the practitioners where they are. Likewise, we recognize the importance of
self-teaching in learning new software. So we provide not only the library itself, but
supporting documentation and tutorials. Finally, we consider some future additions
to the package. As the name, barmpy, suggests, we seek to support a generic model
backbone, not just neural networks. Provided one can (hopefully rigorously) supply
transition and posterior probability methods, this ought to be broadly applicable. For
example, support vector machines may be a straightforward next backbone option
to implement. Additionally, we note that because BARN ensembles are structurally
equivalent to neural networks, techniques specific to NNs are applicable to BARN.
For example, sensitivity analysis attempts to find relevant features by finding those
which are sensitive relative to changes in the target (Pizarroso et al. 2020). All these
implementation details and other “extras” are necessary for enabling users to learn
barmpy and employ it effectively.

Acknowledgements I must thank both of my PhD co-advisors, Xueying Tang and Cristian Román-Pala-
cios, for their constant guidance and support. Prof. Tang provided key mathematical insight and ensured
ongoing statistical rigor. Prof. Román-Palacios balanced this with practical machine learning advice as
well as the perspective of a research scientist.

Code availability The barmpy library is available in full on GitHub at https:// github. com/ dvbun tu/
barmpy.

Declarations

 Conflict of interest This research was performed in part while employed by the Data Diversity Lab within
the School of Information at The University of Arizona.

References

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado G. S, Davis A, Dean J, Devin M,
Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M,
Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B,
Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wat-
tenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heteroge-
neous systems. https:// www. tenso rflow. org/

Abril-Pla O, Andreani V, Carroll C, Dong L, Fonnesbeck CJ, Kochurov M, Kumar R, Lao J, Luhmann
CC, Martin OA et al (2023) PyMC: a modern, and comprehensive probabilistic programming
framework in Python. PeerJ Comput Sci 9:e1516. https:// doi. org/ 10. 7717/ peerj- cs. 1516

https://github.com/dvbuntu/barmpy
https://github.com/dvbuntu/barmpy
https://www.tensorflow.org/
https://doi.org/10.7717/peerj-cs.1516

BARMPy: Bayesian additive regression models Python package

Aggarwal R, Sounderajah V, Martin G, Ting DS, Karthikesalingam A, King D, Ashrafian H, Darzi A
(2021) Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-
analysis. NPJ Digit Med 4(1):65

Baumer B, Udwin D (2015) R markdown. Wiley Interdiscip Rev Comput Stat 7(3):167–177
Brandl G (2021) Sphinx documentation. http:// sphinx- doc. org/ sphinx. pdf
Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Chipman HA, George EI, McCulloch RE (1998) Bayesian CART model search. J Am Stat Assoc

93(443):935–948
Chipman HA, George EI, McCulloch RE et al (2010) BART: Bayesian additive regression trees. Ann

Appl Stat 4(1):266–298
Chipman H, McCulloch R, Chipman G (2022) Package "bayestree". https:// CRAN.R- proje ct. org/ packa

ge= Bayes Tree. R package version 1.4
Chollet F et al (2015) Keras. https:// keras. io
Coltman J |(2022) BARTPy. https:// github. com/ JakeC oltman/ bartpy
Durmus A, Moulines É (2015) Quantitative bounds of convergence for geometrically ergodic Markov

chain in the Wasserstein distance with application to the Metropolis adjusted Langevin algorithm.
Stat Comput 25:5–19

Eiler JM, Schauble E (2004) 18O13C16O in earth’s atmosphere. Geochim Cosmochim Acta
68(23):4767–4777

Escamilla E, Klein M, Cooper T, Rampin V, Weigle MC, Nelson ML (2022) The rise of GitHub in schol-
arly publications. In: International conference on theory and practice of digital libraries. Springer, p
187–200

Flegal JM, Gong L (2015) Relative fixed-width stopping rules for Markov chain monte Carlo simulations.
Stat Sin 25:655–675

Gençay R, Qi M (2001) Pricing and hedging derivative securities with neural networks: Bayesian regu-
larization, early stopping, and bagging. IEEE Trans Neural Netw 12(4):726–734

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J,
Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, del Río JF,
Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K, Reddy T, Weckesser W, Abbasi H, Gohlke
C, Oliphant TE (2020) Array programming with NumPy. Nature 585(7825):357–362. https:// doi.
org/ 10. 1038/ s41586- 020- 2649-2

Hornik K (2012) The comprehensive R archive network. Wiley Interdiscip Rev Comput Stat
4(4):394–398

Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):90–95. https:// doi. org/
10. 1109/ MCSE. 2007. 55

James G, Witten D, Hastie T, Tibshirani R, Taylor J (2023) An introduction to statistical learning: with
applications in Python. Springer Nature, New York City

Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. Preprint at arXiv: 1412. 6980
Lind E, Pantigoso Velasquez Ä (2019) A performance comparison between CPU and GPU in tensorflow.

Examensarbete inom teknik, KTH Royal Institute of Technology
Linero AR (2022) Generalized Bayesian additive regression trees models: beyond conditional conjugacy.

Preprint at arXiv: 2202. 09924
McCulloch R, Sparapani R, Gramacy R, Pratola M, Spanbauer C, Plummer M, Best N, Cowles K Kate

and Vines Package "bart" (2024) https:// CRAN.R- proje ct. org/ packa ge= BART. R package version
2.9.6

Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New York City
Ouyang L, Wu J, Jiang X, Almeida D, Wainwright C, Mishkin P, Zhang C, Agarwal S, Slama K, Ray A

et al (2022) Training language models to follow instructions with human feedback. Adv Neural Inf
Process Syst 35:27730–27744

Patel K, Fogarty J, Landay JA, Harrison BL (2008) Examining difficulties software developers encounter
in the adoption of statistical machine learning. In: AAAI, pp 1563–1566

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss
R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011)
Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

Petersen SV, Defliese WF, Saenger C, Daëron M, Huntington KW, John CM, Kelson JR, Bernasconi SM,
Colman AS, Kluge T et al (2019) Effects of improved 17o correction on interlaboratory agreement
in clumped isotope calibrations, estimates of mineral-specific offsets, and temperature dependence
of acid digestion fractionation. Geochem Geophys Geosyst 20(7):3495–3519

http://sphinx-doc.org/sphinx.pdf
https://CRAN.R-project.org/package=BayesTree
https://CRAN.R-project.org/package=BayesTree
https://keras.io
https://github.com/JakeColtman/bartpy
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2202.09924
https://CRAN.R-project.org/package=BART

 D. Van Boxel

Pizarroso J, Portela J, Muñoz A (2020) Neuralsens: sensitivity analysis of neural networks. Preprint at
arXiv: 2002. 11423

Prado EB, Moral RA, Parnell AC (2021) Bayesian additive regression trees with model trees. Stat Com-
put 31:1–13

PyPi Maintainers (2023) Python package index - PyPi. https:// pypi. org/
Quiroga M, Garay PG, Alonso JM, Loyola JM, Martin OA (2022) Bayesian additive regression trees for

probabilistic programming. https:// arxiv. org/ abs/ 2206. 03619
Román Palacios C, Carroll H, Arnold A, Flores R, Petersen S ,McKinnon K, Tripati A, Gan Q (2022)

Bayclump: Bayesian calibration and temperature reconstructions for clumped isotope thermometry.
Authorea Preprints

Seabold S, Perktold J (2010) Statsmodels: econometric and statistical modeling with python. In: Proceed-
ings of the 9th Python in science conference, vol 57. Austin, TX, pp 10–25080

Shah N, Engineer S, Bhagat N, Chauhan H, Shah M (2020) Research trends on the usage of machine
learning and artificial intelligence in advertising. Augment Hum Res 5:1–15

Solomon J, Rustamov R, Guibas L, Butscher A (2014) Earth mover’s distances on discrete surfaces.
ACM Trans Graph (ToG) 33(4):1–12

Srinath K (2017) Python-the fastest growing programming language. Int Res J Eng Technol
4(12):354–357

Van Boxel D (2023) Barmpy documentation. https:// dvbun tu. github. io/ dvbun tu/ barmpy
Van Boxel D (2024) Bayesian additive regression networks. Preprint at arXiv: 2404. 04425

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

http://arxiv.org/abs/2002.11423
https://pypi.org/
https://arxiv.org/abs/2206.03619
https://dvbuntu.github.io/dvbuntu/barmpy
http://arxiv.org/abs/2404.04425

	BARMPy: Bayesian additive regression models Python package
	Abstract
	1 Introduction
	2 Mathematical background
	3 Library features
	3.1 Related software
	3.2 Regression and binary classification
	3.3 Improving software accessibility
	3.4 Cross-validated tuning via Scikit-Learn
	3.5 Early stopping approaches

	4 Evaluation
	4.1 Case study: isotope modeling
	4.2 Computational costs of BARN

	5 Conclusion
	Acknowledgements
	References

