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Abstract
We make Bayesian additive regression networks (BARN) available as a Python 
package, barmpy, with documentation at https:// dvbun tu. github. io/ barmpy/ for 
general machine learning practitioners. Our object-oriented design is compat-
ible with SciKit-Learn, allowing usage of their tools like cross-validation. To ease 
learning to use barmpy, we produce a companion tutorial that expands on refer-
ence information in the documentation. Any interested user can pip install 
barmpy from the official PyPi repository. barmpy also serves as a baseline Python 
library for generic Bayesian additive regression models.

Keywords Machine learning · Python · MCMC · Software

1 Introduction

We implement Bayesian additive regression networks (BARN) as a software pack-
age, barmpy (for Bayesian Additive Regression Models in Python). This algorithm 
is another approach to the general regression problem of finding some function, 
f (xi) , to approximate a noisy relationship, yi = u(xi) + �i , where �i ∼ N(0, �) is a 
noise term and u(xi) represents some true underlying function. BARN works by sam-
pling from a posterior distribution on ensembles of neural networks (NNs), similar 
to Bayesian Additive Regression Trees (BART) (Chipman et al. 2010), but with a 
different backbone. We cover some of the necessary practical mathematical back-
ground in Sect. 2, but here we focus more on implementation designs for the library.

New methods in machine learning and broader mathematics arise all the time, 
but they are not always readily accessible to data science practitioners (Patel et al. 
2008). Part of the explosion of machine learning was the development of libraries 
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like Scikit-Learn (Pedregosa et al. 2011), TensorFlow (Abadi et al. 2015), and Keras 
(Chollet et al. 2015). Such tools not only freed data scientists from having to imple-
ment machine learning algorithms manually, they also provide detailed documenta-
tion with examples. This kind of broad support is the difference between a research 
algorithm and an accessible library.

Making barmpy accessible means more than publishing code. We integrate 
tightly with existing popular Python machine learning libraries like Scikit-Learn 
(and TensorFlow as an alternative), described in more detail in Sect. 3. This includes 
following those libraries’ best practices regarding complete documentation and 
example tutorials. We even take the algorithmic improvement beyond Scikit-Learn 
by implementing custom model callbacks, such as for early stopping, detailed in 
Sect. 3.5. To show barmpy’s utility and limitations, we conduct benchmark testing 
and a small case study. Part of this is computation time information, as such metrics 
are often a concern for machine learning practitioners. We note that computation 
time is itself an accessibility issue; large language models like ChatGPT are not gen-
erally trainable to users with typical hardware resources (Ouyang et al. 2022). Mak-
ing a new method like BARN usable in terms of speed, capability, and understand-
ability makes barmpy more than an algorithm.

2  Mathematical background

Whereas we describe the methodology of BARN in detail in Van Boxel (2024), here 
we review key points, as relevant to potential users, of BARN as implemented in 
barmpy. Recall that the related method, BART, is made of an ensemble of deci-
sion trees which sum to the prediction (Chipman et  al. 2010). While structurally 
similar to a random forest (Breiman 2001), BART is distinct in that we train it by 
sampling from the posterior distribution of trees using Markov Chain Monte Carlo 
(MCMC) (Chipman et al. 1998). By carefully setting transition, prior, and evidence 
probability functions, BART can calculate an MCMC acceptance ratio for accepting 
a changed tree. After many iterations over all the trees, we realize convergence to 
the desired posterior. BARN works similarly to this but uses neural networks in the 
ensemble rather than decision trees. From an algorithmic (and software design) per-
spective, however, we need to define the MCMC steps of model proposal, transition, 
and posterior.

BARN, like BART, is an ensemble of smaller models. BARN, however, uses an 
ensemble of neural networks instead of decision trees. To train these neural net-
works, we sample from a posterior distribution on the space of neural networks. For 
simplicity, consider a single network, M. The posterior distribution on M involves 
a Bayesian prior, P(M), which incorporates our prior beliefs about the network 
(e.g. how many neurons should it have?). The posterior also includes the evidence, 
P(Y|M, X), which is the likelihood of seeing the target data, Y, given the model, M, 
and input data, X. Intuitively, this measures how well M fits the given data. To sam-
ple from this posterior, we create a Markov Chain that has this posterior as the sta-
tionary distribution. As in Chipman et al. (1998), creating such an MCMC involves 
proposing a new model, M′ , from the old one using some transition probability, 
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q(M,M�) . Then we compute the posterior probability of both old and new models 
to find the acceptance ratio, A(M,M�) in Eq. (1). This ratio is the probability that we 
accept M′ as the replacement for M. After many iterations, this process converges to 
the desired posterior stationary distribution.

Consider the transition probabilities, which in a way, encapsulate the model pro-
posal. In BARN, as in BART, we apply Gibbs sampling to ensembling, proposing, 
training, and potentially accepting a single neural network at a time. BARN allows 
only 2 transitions: adding one neuron or subtracting one neuron. Therefore, we cap-
ture this in a single parameter, p, the probability of adding a neuron to the existing 
network. This proposes the new network size, but to fully specify that network, we 
also need model weights. That involves training the network with standard optimi-
zation techniques, again as described in Van Boxel (2024). The final proposed new 
network in a step is then the result of this procedure.

As noted, to compute the MCMC acceptance ratio, we also need the posterior 
probability of the old and new networks. Note that in BART, this calculation is the 
closed form of an integral over the weights (Chipman et al. 2010). In BARN, this 
is an approximation, so we only need a closed form for the prior and evidence. Our 
default prior depends only on the number of neurons and uses a discrete Poisson dis-
tribution. And finally, the evidence component of the BARN posterior for model k is 
the likelihood of the target residual value, P(Rk|Mk,X) , where Rk = Y −

∑
j≠k Mj(X) 

and Mj(X) is the jth neural network in the ensemble applied to input X. This likeli-
hood assumes a normal distribution of errors (and sampled � value for each MCMC 
step). The prior times this evidence gives us the posterior, which then multiplied by 
the transition proposal probability, contributes to the acceptance ratio. This provides 
all the key aspects of a BARN model.

Consider a small example with three networks in the ensemble: M1,M2, and 
M3 . We wish to propose a possible replacement for M3 , so first we fix M1 and M2 . 
Then we subtract their contribution to the model prediction to obtain the residual, 
R3 = Y −M1(X) −M2(X) . Now we transition M3 to potential new model, M′

3
 , by 

using the transition probability, q(M3,M
�
3
) . In the example Fig. 1, M′

3
 has one less 

neuron than M3 . With the architecture of M′
3
 specified, we find the approximate 

maximum likelihood estimate for the weights, w3 ≈ argmaxw3
P(R3|M3,X) by using 

gradient descent or other suitable optimization routine (Kingma and Ba 2014). After 
training M′

3
 , we are ready to compute the posterior of both M3 and M′

3
 on the lat-

est residual and use those posteriors to obtain the acceptance ratio, A(M3,M
�
3
) . In 

the example in Fig. 1, A(M3,M
�
3
) = 0.42 , and the random number generated is less 

than this, so we accept the new assignment M3 ← M′
3
 . Fixing M3 , we can then turn 

to M1 and repeat this process. We keep cycling through each network in the ensem-
ble, accepting or rejecting transitions, until we converge to the stationary posterior 
distribution.

As briefly mentioned, barmpy users can supply their own parameters or meth-
ods for inputs like the prior distribution. Section  3.4 describes in detail how to 

(1)A(M,M�) = min

(
1,

q(M|M�)P(Y|M�,X)P(M�)

q(M�,M)P(Y|M,X)P(M)

)
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use Scikit-Learn’s own cross-validation with barmpy. And because the library is 
object-oriented, data scientists familiar with Python and Scikit-Learn can quickly 
subclass our BARN or NN classes to their own specifications. A good use case for 
this would adapt BARN for binary classification by changing a few methods that 
control the MCMC process. So even if barmpy basic methods and defaults are not 
directly applicable, they can serve as a starting point for rapid prototyping.

3  Library features

In developing barmpy, we seek not only to implement BARN for regression and 
classification, but also to create an accessible library for generic BART or BARN-
like algorithms. Part of that means weighing different programming language 
options, not only for ease of our own coding, but for future open-source development 
as well. Additionally, we explore some of the choices behind the overall object-ori-
ented design. This design includes tight integration with Scikit-Learn (Pedregosa 
et al. 2011), which multiplies barmpy’s capabilities. Next, we note the importance 
of not only documentation, but fully worked tutorials for practitioners. And finally, 
we discuss some practical concerns like distribution on PyPi (PyPi Maintainers 
2023) and GitHub (Escamilla et  al. 2022). Our goals in developing barmpy go 
beyond merely implementing accurate statistics.

3.1  Related software

We choose to develop barmpy in Python, even though most BART packages are 
written in R. The original researchers into BART are responsible for multiple pack-
ages in R, including variants (Chipman et al. 2022; McCulloch et al. 2024), gener-
ally available on the Comprehensive R Archive Network (CRAN) (Hornik 2012). 
Other BART-derived methods like MOTR-BART also develop in R (Prado et  al. 
2021). While BARN is related to BART, we intend barmpy to be of general use not 

Fig. 1  Toy example showing acceptance of new M′
3
 proposed transition as an MCMC step toward con-

vergence to the posterior distribution in BARN
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only to statisticians, but to professional data scientists as well. And these data scien-
tists almost overwhelmingly choose Python, partly due to its broader ecosystem of 
libraries, documentation, and developer tools (Srinath 2017). Therefore, we develop 
barmpy in Python to reach the data scientists where they are.

There are a few BART implementations in Python, which we briefly review 
here. BARTPy uses a high-level SciKit-Learn style (Pedregosa et al. 2011) model 
interface, though it hasn’t seen activity in several years (Coltman 2022). A more 
up-to-date BART library in Python is PyMC-BART (Quiroga et al. 2022). PyMC-
BART, however, focuses on probabilistic programming within the PyMC framework 
Abril-Pla et al. (2023), which lacks tight SciKit-Learn integration. A library which 
implements BART under active maintenance and with SciKit-Learn principles is 
ISLP (James et al. 2023). This is actually the code companion to a textbook, but 
it uses SciKit-Learn classes like BaseEstimator in a direct imperative style of 
programming familiar to those with SciKit-Learn and NumPy (Harris et al. 2020) 
experience. We keep these Python BART libraries’ strengths and limitations in mind 
when developing barmpy.

SciKit learn is particularly relevant because it implements a huge variety of 
machine learning algorithms with a standardized object-oriented application pro-
gram interface (API) (Pedregosa et  al. 2011). It has modules for many popular 
machine learning approaches such as linear regression, random forests, neural net-
works, and more. Further, SciKit-Learn provides variable transformation routines 
which are especially helpful when including a model within a SciKit-Learn pipe-
line with pre- and post-processing. While other Python libraries like statsmod-
els provide detailed statistics in a manner similar to R packages (Seabold and 
Perktold 2010), Scikit-Learn focuses on practical usage and extensibility. For exam-
ple, statsmodels requires some workarounds to enable using models for pre-
diction on new data, but every Scikit-Learn Estimator has a built-in predict 
method for exactly this. Further, Scikit-Learn implements a method for cross-val-
idated hyperparameter tuning; anything that subclasses a Scikit-Learn Estima-
tor may tune this way. Much like ISLP, barmpy inherits from these SciKit-Learn 
classes. And therefore, barmpy automatically benefits from the entire Scikit-Learn 
ecosystem.

3.2  Regression and binary classification

As our BARN ensemble is made of many small neural networks, our fundamental 
class is NN, which uses the Scikit-Learn primitive, MLPRegressor (for “Multi-
Layer Perceptron”, i.e. a fully connected neural network). A short example of 
training BARN is in Snippet 1. Our class includes helper methods to compute 
the various MCMC log-likelihood and prior probabilities given a network, as this 
is done on a per-network level under Gibbs sampling. There are also routines to 
quickly save or load results, and handle the weight donation to other neural net-
works when transitioning. Building an ensemble of these NN objects, we have the 
general BARN class. This is more than a list of NN objects; it includes parameters 
to customize the algorithm priors. Further, it has a critical method, BARN.fit, 
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which implements the full BARN procedure with Gibbs sampling. While not par-
allelized (as models must be fit sequentially), it does avoid duplication of com-
putation by caching residual values and only updating them with the networks 
that have changed. This turns an O(N) operation, where N is the number of net-
works in the ensemble, into an O(1) (i.e. constant time) operation. And like NN, 
this class has some helper methods for features like Monte Carlo batch means 
analysis and built-in visualization of key results using matplotlib (Hunter 
2007). From a user perspective, they need only instantiate a BARN object, setup 
the Bayesian parameters, and supply data for training.

BARN for classification works similar to regression. Currently, the library sup-
ports binary classification with targets encoded as yi ∈ {0, 1} . In code, one swaps 
BARN_bin for BARN. After training, BARN_bin’s predictions lie in (0,  1), and 
represent the model’s predicted probability of the true class being 1, as in a pro-
bit model. If desired, one can directly produce the model z-scores which equate to 
these probabilities. For usage, we again offer a small example in Snippet 1. Inter-
nally, BARN_bin inherits from the same base class as BARN, BARN_base, which 
implements most of the sampling logic. Because of this, BARN_bin uses the same 
MLPRegressor (not MLPClassifier) for each component of the ensemble. 
Options like prior distribution mean value are identical, making it easy to switch 
between these BARN modes for different problems as needed. 

We note that BARN does not yet support training on data like counts nor mul-
ticlass classification. There exist extensions to BART which cover these cases, but 
they require  some additional care when computing the MCMC acceptance ratio 
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(Linero 2022). Adapting those types of data to BARN will require additional analy-
sis and implementation.

Our BARN implementation comes with reasonable defaults for ease of use by 
scientific practitioners. We recommend the NN growth transition probability be set 
to p = 0.4 . This mildly encourages the algorithm to test relatively small networks, 
mitigating the chance of a single network dominating the ensemble. Similarly, we 
advise setting the network size prior distribution mean to � = 1 or another small 
value to again encourage networks to be individually weak learners. If one is using 
BARN for pure architecture search (i.e. only a single network in the ensemble), 
however, then � should be larger to accommodate more complexity. Additionally, 
users can supply their own generic probability mass function if they wish to control 
the prior more carefully. The number of networks in the ensemble, as mentioned, is 
itself a settable parameter. We default to 10 as this balances ensembling to improve 
generalization with increased computation time from additional network training. 
For the neural network training itself, parameters like learning rate and weight regu-
larization penalties are more problem-dependent. We suggest learning rate lr = 0.01 
and L1L2 regularization r = 0.01 , but note that users should experiment with these 
particular settings. Additional details on tweakable parameters are available in the 
BARN documentation (Van Boxel 2023).

3.3  Improving software accessibility

To further ease usage and additional development, we have adopted several more 
general software engineering principles. First, being a Python library, we natu-
rally distribute barmpy as a package on PyPi.org (PyPi Maintainers 2023). This 
enables hassle-free installation for new users. Next, as noted earlier, we main-
tain all development history in a Git repository on Github. This repository also 
logs issues, which can be reported bugs or plans for future features that users can 
explore. To ensure functional correctness even in the face of seemingly unrelated 
changes, we run a suite a unit tests with every commit to the main branch. Each 
test runs a small chunk of code using barmpy as a library and compares the out-
put to a known good result. When a test fails, we can see exactly where and if this 
needs attention. In addition to assisting with development, unit tests also act as 
examples for new users. Beyond such rigorous tests, we also wrote and deployed 
a complete walkthrough via an R Markdown (Baumer and Udwin 2015) script. 
This walkthrough describes a problem end-to-end, from generating data to run-
ning BARN and interpreting the results. Further, because this is in R Markdown, 
users can run the code chunks themselves (by knitting the script or copying 
it into a Python terminal). Example output is provided, as in Fig. 2, for users to 
verify their results, thereby ensuring they can learn how to apply barmpy on 
their own. Finally, when users or developers need more details, they can review 
the low-level documentation we developed using Python’s Sphinx library (Brandl 
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2021). This documentation is in part automatically generated from the BARN 
Python docstrings themselves, though we include additional mathematical infor-
mation at an appropriate level, such as for doing cross-validation on BARN with 
Scikit-Learn. The source documents are part of the repository itself, but they are 
also online as a Github Pages website (Van Boxel 2023). These tools enable new 
users and developers to quickly understand, use, and improve on the BARN algo-
rithm for data science projects.

3.4  Cross‑validated tuning via Scikit‑Learn

BARN is implemented as a sklearn class, meaning we can use standard 
sklearn methods like GridSearchCV to tune the hyperparameters for the 
best possible result. Note that each additional parameter choice increases the 
computation time multiplicatively, so one should be mindful when considering 
the number of possible hyperparameter values.

All arguments to BARN which accept different values can be tuned this way. 
In Snippet 2, we show an example that tunes the prior distribution mean value 
parameter, � . Also, when using a method like RandomizedSearchCV, one 
should be careful to supply appropriate distributions. Here, l takes discrete val-
ues, so we specify a discrete Poisson probability distribution to sample from. 
Note, however, that this distribution is only for cross-validation sampling of the 
prior parameters, not for BARN to use in internal MCMC transitions.

Fig. 2  Example tutorial output showing BARN may outperform OLS and even a much larger neural net-
work. Note this example uses no cross-validated tuning
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3.5  Early stopping approaches

In machine learning, even when training some model over many iterations, it is 
common to stop the process early under some conditions. Typically, these involve 
checking some error metric against held-out validation data (Gençay and Qi 2001). 
If the metric fails to improve, then one stops training in order to avoid overfitting to 
training data. Given the MCMC-based training process of BARN, however, there 
are several possibilities for such metrics.

In addition to the standard approach of checking validation error, we explore 
alternatives measuring stability in the posterior. As the MCMC posterior is some 
probability distribution, we can estimate it from our samples once we reach conver-
gence. If this estimate is stable, then we infer that convergence has been reached and 
we can stop. One reasonable metric is the earth-mover distance (also known as the 
one-Wasserstein metric (Solomon et al. 2014)) from one estimate of the distribution 
to the next. In our case, this means evaluating the distribution of the number of neu-
rons in each network of the ensemble and setting a change threshold. Though some 
researchers explored similar ideas (Durmus and Moulines 2015), they focused more 
on mixing rate. A similar though simpler heuristic is to simply check how many 
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proposed model transitions BARN accepted in the previous iteration. If the model 
has converged, then the error rates are already low and it will be relatively difficult 
to dislodge an existing model. Therefore, so long as a model continues to accept 
transitions, it advances to the next MCMC iteration, as Snippet 3 details in Python. 
By default, this method stops if less than 20% of the networks in the ensemble tran-
sitioned. A final, more rigorous alternative is to check not just the stationarity of the 
MCMC calculation, but the complete convergence of batch means as well. The rela-
tive fixed-width stopping rule constructs a t-stat to check recent convergence of rela-
tive batch means, implying stationarity (Flegal and Gong 2015). These are all rela-
tively quick to implement, so we make them available to users as a model callback.

To assist users developing their own callback, or for general model evaluation, 
barmpy internally tracks a few variables at each MCMC iteration. Snippet 3 uses 
self.ntrans_iter, which counts how many proposed transitions were 

accepted for each iteration. Additionally, let �i =

�
∑

i

(Yi−
∑

k Mk(Xi))
2

N
 be the root 

mean squared error (RMSE) over the N validation data points. Then self.phi 
contains this validation RMSE for each iteration. Similarly, self.actual_num_
neurons tracks the number of neurons in each network in the ensemble, and 
self.sigma maintains a list of the current � estimate of the noise. These arrays of 
variables provide information about a given BARN run’s training process and serve 
as inputs to custom callbacks.

In practice, however, we expect most data scientists to use the more common 
check on the current model validation error than these other methods like Snippet 3. 
In various evaluations, we found most methods provide similar results (about a 20% 
reduction in computation time), with validation error anecdotally being the most sta-
ble. We still expose them, not only for their nominal purpose, but also as examples 
of generic custom model callbacks that can affect the training procedure.
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4  Evaluation

To see in what contexts barmpy is most useful, we analyze its error and tim-
ing metrics in different situations. We focus on both a small case study with data 
from an active problem in biology as well as a review of computation time on dif-
ferent synthetic data sets.

Before discussing these results, we quickly note how Van Boxel (2024) covers 
a broad range of real and synthetic data sets to show where BARN is most effec-
tive. In particular, their analysis of specific synthetic data sets provides some of 
the most insight. Without repeating the analysis there, we note that BARN does 
better than other methods on problems where there is a strong functional nonlin-
ear relationship like Friedman F2 or F3. So BARN may be practically appropriate 
as an approximation to a complex system that cannot be easily directly modeled.

4.1  Case study: isotope modeling

While Van Boxel (2024) runs BARN on a wide variety data sets, we focus here 
on one case study on clumped isotope paleothermometry. The modeling problem 
itself is to predict carbonate clumped isotope thermometry, Δ47 , as a function of 
temperature (Eiler and Schauble 2004). This is a calibration process; in practice 
one uses Δ47 as a surrogate for historical temperature that was not measured (and 
therefore something invertible like OLS is typically preferable). The ecological 
details are beyond the scope of this paper, but there are various studies on this 
topic (Eiler and Schauble 2004; Román Palacios et al. 2022; Petersen et al. 2019). 
A recent study (Román Palacios et al. 2022) demonstrated the effectiveness of a 
Bayesian least squares approach to this data. Such a method uses a linear model 
as in OLS, but employs priors on the estimated parameter values informed by ear-
lier studies. BARN also uses priors but on the model structure (by affecting the 
size of learned networks) rather than the parameters directly.

As this data set is in a single variable, we can visually inspect the relationship 
between temperature and Δ47 . Figure  3 plots Δ47 against the inverse of squared 
temperature, showing a strong linear relationship, though with some spread. 
Scientists training models on this data need to be able to invert the model (i.e. 
change Δ47 = f (T) into T = f −1(Δ47) ) to predict historical temperatures. So even if 
BARN outperforms other approaches, it will likely not replace linear methods on 
this particular problem. We focus on BARN’s performance on the data as an area 
of active research.

In Fig. 4 we inspect results on this “isotope” data set, and we see that BARN 
performs well relative to the other methods. Note that the output has been rescaled 
from the original for this calculation. BARN produces very similar results to 
OLS (test RMSE about 0.298, 4% less than the next-best method’s error). And, 
BARN works nearly as well without cross-validated tuning as with (less than 
0.1% test RMSE difference). This performance, even without tuning, does require 
an increased computational cost, as we shall see in Sect. 4.2. We caution, again, 
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Fig. 3  Apparent linear relationship between temperature and Δ
47

Fig. 4  Absolute RMSE boxplot 
of various methods on the 
isotope data set. BARN (with or 
without tuning) and OLS have 
similar profiles, while other 
methods are significantly worse 
(but still rather accurate; note 
log scale)
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that our BARN analysis here is for demonstration only, as this particular problem 
requires invertibility.

The state-of-the art in this area uses Bayesian linear models. We show Fig. 5 to 
quickly compare existing methods with our approaches on a specific data split of 
interest (hence why there are only point estimates of the error). Further, we note 
that these are on the original data scales, hence why all the errors appear so much 
smaller than in Fig. 4. BARN appears to be in the same class of error levels as the 
best linear approaches. BARN’s error is only about 1% higher than the best method 
(and even closer for tuned BARN). This is especially interesting because the other 
nonlinear methods we tested (the big NN and BART) actually perform significantly 
worse than OLS and BARN when not using cross-validated tuning. It is possible 
that BARN is able to simplify to an OLS-like model that is appropriate for this prob-
lem (which has a single explanatory variable) where other nonlinear methods would 
require additional training data for such a reduction. This demonstrates some of the 
adaptability and broad applicability of BARN.

4.2  Computational costs of BARN

While Van Boxel (2024) described BARN’s performance in terms of error, here we 
consider the computational cost of running it. There can be a trade-off here. Some 
problems, like targeted display advertising (Shah et al. 2020), benefit from speed of 
computation (at the expense of accuracy); others, like medical imaging (Aggarwal 

Fig. 5  Testing RMSE point estimates (only a single split performed) on Δ
47

 testing data for various 
methods. BARN performs similarly to linear methods (Román Palacios et al. 2022) even when a big NN 
and BART perform significantly worse. Note that methods used in this study (top six models) reserve 
25% of the training data for validation (hence why “OLS_VALID” is separate from “OLS”)
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et  al. 2021), require very low prediction error and are willing to invest computa-
tional resources to achieve it. To assess BARN on this axis, we consider the data sets 
described in Van Boxel (2024). While these data sets are modest in size (about 1000 
data points and 10 features), they are sufficient to realize the differences in computa-
tion times, in seconds, shown in Table 1. These times do vary across runs, but not to 
the extent of the order of magnitude differences in times across methods.

In Fig. 6, we see the relative computation times for our various methods on all 
data sets. OLS, being only linear algebra, is always the fastest (hence the relative 
time of 1). Next, training a single neural network with gradient descent takes 10–100 
times as long (still less than a second on any given problem). BART is solidly 100 
times slower than OLS, about 1 s of real time. Plain BARN is about 10,000 times 
slower than OLS, taking on the order of 10 s to a 1 min on a given problem. This 
is primarily due to the necessity of training new small neural networks for all the 

Table 1  Mean training time in seconds over 40 trials of various methods on different data sets

Dataset BARN BARN CV BART BART CV Big NN Big NN CV OLS

cali small 70.315 3051.940 0.821 240.575 0.149 29.332 0.002
concrete 76.898 3418.810 0.494 148.01 0.066 20.202 0.002
crimes 270.220 14175.800 0.905 258.248 0.183 30.963 0.011
diabetes 16.364 2231.910 0.177 73.3536 0.035 9.663 0.002
fires 33.866 3302.060 0.168 78.0964 0.036 10.802 0.002
isotope 7.521 526.695 0.350 136.935 0.032 6.532 0.001
mpg 30.834 1923.640 0.170 66.4122 0.031 8.533 0.002
random 21.660 1117.350 0.574 146.616 0.039 15.839 0.002
wisconsin 58.132 3734.430 0.120 48.0919 0.043 7.964 0.002

Fig. 6  BARN is comparable in time to other methods with cross-validation
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MCMC iterations. While each one is very fast (close to 10 times faster than the sin-
gle big network), doing this for 200 MCMC iterations is a significant cost. BART 
avoids this cost because it does not “train” in a traditional sense (i.e. it does not set 
weights with the standard CART procedure), so the MCMC iterations are not as 
computationally intense. On the face of it, BARN seems like it is very slow.

When we consider the methods with cross-validated hyperparameter tuning, how-
ever, we see that BARN is actually time-competitive with the other nonlinear meth-
ods. Those methods are on the order of tens of seconds for this data. Now, from 
earlier studies (Van Boxel 2024), we know that plain BARN is nearly as accurate 
as BARN with tuning. Across real data benchmarks in that study, BARN without 
tuning had only 0.2% higher median relative test RMSE than BARN with tuning. 
In situations where extensive computational resources are available or minimizing 
error as much as possible is critical, tuning BARN with cross-validation can provide 
a modest improvement over untuned BARN.

Yet even untuned BARN still produces lower error than BART or the big neural 
network even when those methods are tuned. Looking at Fig. 6 again, we see that 
plain BARN takes about the same amount of relative time as other methods when 
those are tuned. Those methods benefit significantly from such tuning, whereas 
BARN may be adaptable even without it. For situations requiring low testing error 
in regression, BARN is time-competitive with other nonlinear algorithms.

We did explore various speedups to BARN. Recall that we chose to implement 
BARN in a Scikit-Learn compatible way, including using their MLPRegressor 
class. While this is convenient, it may not be the fastest NN implementation. So we 
also implemented BARN using TensorFlow-based neural networks, including train-
ing these NNs on GPUs (Abadi et al. 2015). For large neural networks, GPUs often 
provide a 5 times or better speedup from parallelism (Lind and Pantigoso Velasquez 
2019), but with BARN, we found just the opposite. Because BARN typically uses 
tiny neural networks, these map poorly to GPUs. Significant time, relative to the 
computation cost, is lost simply moving data between CPU and GPU. Another 
improvement we tried, however, was more helpful. Initially, we trained BARN net-
works using typical gradient-descent style solvers common in machine learning 
and TensorFlow. But since we were using Scikit-Learn, we also had easily avail-
able quasi-Newton methods like BFGS (Nocedal and Wright 1999). At the scale of 
networks and data sets considered, we found switching away from gradient descent 
provided a 2–4 times speedup. Understanding that this is problem dependent, how-
ever, we enable setting this parameter in the function and provide a sane default 
that selects based on network size. Such techniques provide BARN with some speed 
enhancements, though more research in this area is needed.

5  Conclusion

We reviewed the design and capabilities of the new Python package, Bayesian Addi-
tive Regression Models in Python (barmpy). In addition to the favorable results of 
lower error rates on benchmark data seen in Van Boxel (2024), we found barmpy 
to be fast enough on relevant problems. While it is an order of magnitude slower 
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than BART, BARN does not need hyperparameter tuning to do well, making it gen-
erally time-competitive. Still, additional research into faster implementations of 
BARN would be beneficial. TensorFlow wasn’t able to improve speeds, but another 
linear algebra library, one tuned for many small matrices, might be appropriate. Or, 
BARN may benefit from an algorithmic change. For example, rather than learning 
weights via the neural network training procedure, we could sample them directly as 
part of the MCMC process. This has the downside of ignoring existing optimization 
approaches, but something similar works for BART, so it may work here. Beyond 
direct metrics, we also emphasized the importance of accessibility for barmpy. This 
is why we chose to develop it in Python with tight integration with Scikit-Learn. 
We meet the practitioners where they are. Likewise, we recognize the importance of 
self-teaching in learning new software. So we provide not only the library itself, but 
supporting documentation and tutorials. Finally, we consider some future additions 
to the package. As the name, barmpy, suggests, we seek to support a generic model 
backbone, not just neural networks. Provided one can (hopefully rigorously) supply 
transition and posterior probability methods, this ought to be broadly applicable. For 
example, support vector machines may be a straightforward next backbone option 
to implement. Additionally, we note that because BARN ensembles are structurally 
equivalent to neural networks, techniques specific to NNs are applicable to BARN. 
For example, sensitivity analysis attempts to find relevant features by finding those 
which are sensitive relative to changes in the target (Pizarroso et al. 2020). All these 
implementation details and other “extras” are necessary for enabling users to learn 
barmpy and employ it effectively.
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