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Abstract5

Understanding the macroevolutionary dynamics of species interactions such as parasitisms, commen-6

salisms, and mutualisms is an important goal in evolutionary ecology. To this end, statistical inference7

from extant cophylogenetic systems holds immense potential. However, such inference cannot yet handle8

the speciation-extinction dynamics that occur simultaneously in the host and symbiont clades on the same9

timescale. Here we present an Approximate Bayesian Computation (ABC) approach that, while taking10

into account host and symbiont extinction, infers rates of four types of speciation from a cophylogenetic11

system: (i) host speciation, (ii) symbiont speciation without host-switching, (iii) symbiont speciation with12

host-switching, and (iv) cospeciation. The new ABC approach relies on a novel design of summary statistics13

combining both size-based (i.e., tree sizes) and size-free summary statistics (i.e., the normalized distribution14

of Branch Length Differences - BLenD) of the cophylogeny. Convergence analyses show that the combined15

design of summary statistics outperforms size-based or size-free summary statistics alone – achieving satis-16

factory accuracy in detecting rate heterogeneity between the four types of speciation. Our ABC approach17

allows the user to infer the predominant mode of speciation within a given cophylogenetic system. The18

approach is demonstrated with an application to a cophylogenetic dataset of commensalism, in which bee-19

tles of one genus mimic those of another. In this system, we identify host speciation as the predominant20

process with the fastest rate (in events per unit time) among all four types of speciation (i.e., 4.3-5.1 times21

faster than the median among all four types of speciation). Understanding how and why different types22

of speciation may predominate in different cophylogenetic systems can have implications for various areas23

in ecology and evolution such as host conservatism, trait-driven diversification, pathogen spillover risk, and24

parasite extinction risk. This new approach highlights the need and potential for future efforts to compile25

time-calibrated cophylogenies.26
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1 Introduction30

Biologists have long sought to understand the relationship between macroevolution and ecological interactions.31

Early examples include how Darwin explains the diversity of life as a result of natural selection in his sem-32

inal book, using examples where natural selection occurs as a result of organisms’ ”struggle for life” against33

their competitors and natural enemies (Darwin, 1859). A recent comprehensive synthesis has consolidated the34

macroevolution of species interactions as a rapidly-evolving subfield of ecology and evolution with deep histor-35

ical roots (see Hembry and Weber 2020 for an overview). Several other syntheses have separately examined36

the effects of species interactions on macroevolution, reaching varying conclusions about whether generalities37

exist in how species interactions influence clade diversification (Jablonski, 2008; Harmon et al., 2019; Zeng and38

Wiens, 2021; Kaur and Pennell, 2023). Another body of research has focused on the effects of macroevolution39

on species interaction networks. Such examples include how macroevolutionary stability shapes the intricate40

architecture of species interaction networks (Burin et al., 2021) and statistical inference of the evolutionary41

history of species interaction networks (Braga et al., 2020, 2021). Recent years have also seen significant ad-42

vances in theoretical work that, by modeling how speciation arises from mutation in a (meta)community with43
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ongoing species interactions, bridges the microevolution-macroevolution gap and provides mechanistic insights44

into the evolution of ecological communities (Aguilée et al., 2018; Coelho and Rangel, 2018; Maliet et al., 2020;45

Chaparro-Pedraza et al., 2022; Pontarp et al., 2024; Zeng and Hembry, 2024).46

In particular, the joint macroevolutionary history of organisms that interact in pairs (i.e., bipartite47

interactions) has attracted much attention over the decades. Examples of bipartite interactions include those48

between plants and pollinators, plants and seed dispersers, hosts and parasites, and between plants and herbi-49

vores (see Bronstein 2015 for an overview). Coevolution can arise when reciprocal evolutionary change happens50

between interacting parties, driving or impeding the diversification of the interacting clades (Yoder and Nuis-51

mer, 2010; Hembry et al., 2014). Coevolution can leave detectable signals in the cophylogenetic patterns of52

bipartitie species interactions, such as those formed by hosts and their mutualistic, commensal, or parasitic53

symbionts. Significant effort has been devoted to studying topological congruence between phylogenies of inter-54

acting organisms as an indicator of cospeciation or codiversification (e.g., Legendre et al. 2002; de Vienne et al.55

2007; Hoyal Cuthill and Charleston 2012; Hayward et al. 2021; Perez-Lamarque and Morlon 2024; reviewed56

in Nieberding and Olivieri 2007; de Vienne et al. 2013; Mart́ınez-Aquino 2016; Dismukes et al. 2022). Recent57

cophylogenetic research has forayed into linking cophylogenetic patterns with their underlying eco-evolutionary58

processes (Blasco-Costa et al., 2021). Another area of active research is cophylogenetic reconstruction, aiming59

to reconstruct the joint evolutionary history of interacting clades by finding a parsimonious series of events that60

give rise to the observed cophylogenetic patterns (e.g., Merkle et al. 2010; Baudet et al. 2015; Sinaimeri et al.61

2023; reviewed in Charleston and Libeskind-Hadas 2014).62

However, the study of the macroevolutionary rates of cophylogenetic systems remains in its infancy.63

Macroevolutionary rates can be defined, for single clades, as speciation and extinction rates that can be inferred64

from phylogenetic systems (Stadler, 2013; Harmon et al., 2014). Here, we define macroevolutionary rates of65

species interactions (i.e., of interacting clades) as speciation and extinction rates that can be inferred from66

cophylogenetic systems. Although much recent work has been focused on the advancement of phylogenetic67

comparative methods for estimating the speciation, extinction, or net diversification rates of single clades68

(Garamszegi, 2014; Revell and Harmon, 2022; Morlon et al., 2024), single-clade-based phylogenetic methods69

cannot be readily used for cophylogenetic systems. Specifically, although these single-clade-based methods70

allow diversification rates to be inferred separately for host and symbiont clades in a given cophylogenetic71

system, these rate estimates cannot provide a full picture of the prevalence of different types of speciation in the72

cophylogeny (Charleston and Perkins, 2006; Charleston and Libeskind-Hadas, 2014). Motivated by a desire to73

better understand parasitic symbionts (i.e., pathogens), Alcala et al. (2017) represents an important advance in74

estimating macroevolutionary rates of species interactions from cophylogenetic systems. This approach focuses75

on estimating the rate of cospeciation and the probability of host switching in the symbiont clade. However,76

this approach has two major disadvantages when the entire cophylogenetic system, as opposed to the symbiont77

clade alone, is of interest: (i) it does not allow host speciation and symbiont speciation to occur on the same78

timescale; (ii) it does not take into account host extinction, in which symbionts relying on the extinct host goes79

extinct as well. A promising, more recent approach can already tease apart the relative contributions of different80

macroevolutionary processes (cospeciation, host switching, pollinator speciation, and pollinator extinction) in81

generating cophylogenetic patterns (Satler et al., 2019). However, this method suffers the same problem of82

inconsistent timescales between host and symbiont diversification, resulting in zero rate estimates for host83

switching and cospeciation in some cases. Fortunately, recent advances have allowed simulating cophylogenetic84

systems as a result of constant-rate birth-death processes, simultaneously incorporating speciation and extinction85

in both the host and symbiont clades (Dismukes and Heath, 2021). This new model has paved the way for86

developing new statistical methods for estimating macroevolutionary rates of bipartite species interactions.87

Approximate Bayesian Computation (ABC) has been shown to be a useful tool for estimating macroevo-88

lutionary rates of species interactions from cophylogenetic systems (Alcala et al., 2017). ABC is a class of89

simulation-based inference that has proven especially suitable for models whose likelihoods are impossible or90

difficult to obtain (Marin et al., 2012; Sunn̊aker et al., 2013). Initially developed by geneticists, ABC has been91

increasingly used in ecology and evolution (Pantel and Becks, 2023). In the most basic form of ABC, real data92

is compared to numerous simulations generated using different parameter samples, and parameters samples93

that generate simulations similar enough to the real data constitute the approximate posterior distribution of94

that parameter; the key to successful ABC is designing informative summary statistics that are informative95

and low in dimensionality (Sunn̊aker et al., 2013). Conceptual frameworks and standard practices have been96

established for using approximate Bayesian computation for both parameter estimation and model selection in97

ecology and evolution (Csilléry et al., 2010, 2012; Janzen et al., 2015; Pontarp et al., 2019; Pantel and Becks,98

2023). As for estimating macroevolutionary rates of species interactions from cophylogenetic systems, the ex-99

isting ABC approach shows promising potential but also suffers significant difficulty in implementation (Alcala100

et al., 2017). Specifically, the implementation of this approach requires highly customized representation of co-101
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phylogenies, a multitude of network summary statistics, dimension reduction techniques, and machine learning102

techniques. An easy-to-implement ABC approach to estimating macroevolutionary rates of species interactions103

from cophylogenies is yet to be developed.104

Here, we develop a new ABC approach that, while taking into account host and symbiont extinction,105

infers the rates of four types of speciation processes from an extant cophylogeny: (i) host speciation, (ii) symbiont106

speciation without host-switching, (iii) symbiont speciation with host-switching, and (iv) cospeciation. This107

ABC approach is easy to implement thanks to our newly designed summary statistics, which take into account108

properties of the cophylogeny that are both related to or irrespective of the sizes of the host and symbiont trees109

(i.e., size-based and size-free summary statistics). We show that the performance of the parameter inference110

remains reasonably good despite the “curse of dimensionality”, process stochasticity of speciation and extinction,111

and partial information.112
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Figure 1: Speciation and extinction events giving rise to cophylogenetic patterns. Macroevolutionary rates of
species interactions considered in this study (denoted by Greek letters in parentheses) are defined as, for each
type of event, the number of events per unit time. (a) Host speciation (λH): both descendent hosts retain
association with the original symbiont. (b) Symbiont speciation without host switching (λS): both descendent
symbionts retain association with the original host. (c) Cospeciation (λC): a host and one of its symbionts,
randomly selected, undergoes speciation simultaneously (host 1 into hosts 3 and 4; symbiont 2 into symbionts
4 and 5). Each descendant host forms association with one of the descendant symbionts (host 3 with symbiont
4; host 4 with symbiont 5). The ancestral host’s and symbiont’s remaining associations are randomly sorted
among the descendants. (d) Symbiont speciation with host switching (λW ): same as (b), but here one of the
descendant symbionts switches to a new, randomly selected hostt. (e) Host extinction (µH): note that the
symbiont(s) relying on this host goes extinct as well. (f) Symbiont extinction (µS). These event definitions are
identical to those in the simulation tool, except that the rate of symbiont speciation with host switching (λW )
is denoted by χ in the original study (Dismukes and Heath, 2021).

2 Methods113

In brief, we follow these two steps to estimate the speciation rates of a target cophylogeny: (i) we simulate114

cophylogenies following a birth-death model for co-diversification. (ii) In an ABC framework, the simulated115

phylogenies are compared to the target cophylogeny to obtain estimates of the speciation rates. Notably,116
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the comparison between the simulated and target cophylogenies is decided by summary statistics. In our117

performance evaluation, we perform this two-step ABC procedure, using cophylogenies simulated with known118

parameter values as the target cophylogeny. In our application to empirical data, we perform the same two-step119

ABC procedure using a cophylogeny compiled from empirical data as the target cophylogeny. Below, we provide120

details of each of these components.121

2.1 A Birth-Death Model for Co-diversification122

We use the sim_cophyBD function from the R package treeducken (ver. 1.1.0; Dismukes and Heath 2021) for123

simulating cophylogenies following a birth–death model. The model in treeducken allows the simulation of host124

and symbiont co-diversification. The model considers six types of speciation or extinction events (Fig. 1): host125

sepeciation (λH), symbiont speciation without host switching (λS), cospeciation (λC), symbiont speciation with126

host switching(λW ), host extinction (µH), and symbiont extinction (µS). Each type of event is controlled by a127

rate parameter that represents the number of events per unit time following a Poisson process. For example, a128

rate of 1 means one event occurs per unit time in the cophylogenetic system.129

Because this approach is designed to infer macroevolutionary rates of species interactions from extant130

cophylogenetic systems, the extinction rate must not exceed the speciation rate for the host and symbiont clades.131

We further parameterize the model by defining relative extinction rates ϵH (for the host clade) and ϵS (for the132

symbiont clade) as follows,133

ϵH =
µH

λH + λC
, ϵS =

µS

λS + λC + λW

where both ϵH and ϵS range between 0 and 1. In the ABC framework (detailed below), we assume that ϵH and134

ϵS are known and aim to estimate the four speciation rates (λH , λS , λC , λW ).135

2.2 ABC Framework136

Speciation rates (λH , λS , λC , λW ) in a cophylogenetic system can be collectively seen as a multivariate parameter137

θ, which is treated as a random variable in Bayesian parameter inference. The posterior probability of θ given138

observed data D can be, in theory, obtained by139

P (θ|D) =
P (D|θ)P (θ)∫
P (D|θ)P (θ) dθ

where P (θ) is known as the prior distribution and P (D|θ) as the likelihood function (i.e., the probability140

of observing the cophylogeny D given the parameter θ). However, when D is a cophylogeny and θ is the141

parameter in the birth-death model, the likelihood function is difficult to obtain, making Approximate Bayesian142

Computation (ABC) an especially useful approach for parameter estimation (Alcala et al., 2017). An ABC143

approach does not explicitly compute the likelihood but instead uses simulations to approximate the posterior144

distribution. Here, we use the basic form of a rejection-based ABC approach (Csilléry et al., 2012) following145

these steps. First, cophylogenies are simulated with the birth-death model (see the previous section in Methods)146

using samples of θ drawn from the prior distribution. Then, each sample from the prior distribution is accepted147

if the distance between the resulting simulated cophylogeny and D is below a given threshold. Alternatively, a148

sample is rejected if the distance is above the threshold. The distances are determined by summary statistics149

(see the following section in Methods). The threshold is decided by the tolerance rate, which determines the150

proportion of simulations with the smallest distance to accept. Eventually, accepted samples of θ constitute the151

approximate posterior distribution.152

2.3 Summary Statistics153

The key to successful ABC parameter inference is summary statistics that decide the distance between a sim-154

ulation and the observed data (Sunn̊aker et al., 2013). A cophylogenetic system (e.g., Fig. 2a) consists of two155

phylogenies and the network formed by the tips of the two trees. In theory, one could use indices of phylo-156

genies and networks as the summary statistics for ABC. Indices for phylogenies include phylogenetic diversity157
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(Clarke and Warwick, 2001), the gamma statistic (Pybus and Harvey, 2000) and Sackin index measuring tree158

shape (Sackin, 1972). Indices for networks include global properties such as nestedness, modularity, connectance159

(Guimaraes Jr, 2020), and meso-scale properties such as motif frequencies (Simmons et al., 2019). Indices con-160

cerning both the phylogeny and network components of a cophylogeny include the mantel correlation, a measure161

of phylogenetic conservatism of bipartite species association (Maliet et al., 2020). However, single indices tend162

not to be informative enough as summary statistics for phylogenetic systems (Janzen et al., 2015; Janzen and163

Etienne, 2024). On the other hand, when we combine multiple of these indices in our preliminary exploratory164

analyses, parameter convergence is generally difficult. This is unsurprising because the high dimensionality165

of summary statistics can introduce the “curse of dimensionality”, that is, the match between a simulation166

and the observed data gets significantly more unlikely when the dimensionality of summary statistics increases167

(Sunn̊aker et al., 2013). The difficulty in convergence in our preliminary analyses also agrees with the pre-168

vious study on estimating macroevolutionary rates of species interactions from cophylogenies, where accurate169

parameter inference based on numerous indices is difficult without dimension reduction and machine learning170

techniques (Alcala et al., 2017). Because of these reasons, we do not choose index-based summary statistics for171

our approach.172

As opposed to index-based summary statistics, normalized curves have been proposed as an alternative173

type of summary statistics for ABC. Specifically, a pioneering study has used a normalized lineage-through-time174

curve (nLTT), which is irrespective of the size or length of the phylogenetic tree, to effectively estimate constant175

speciation rates from single phylogenies while taking into account constant-rate lineage extinction (Janzen et al.,176

2015). The nLTT summary statistics are informative, computationally efficient, and not obviously affected by177

the “curse of dimensionality”. Inspired by this work, here we adapt the use of normalized curves as summary178

statistics for cophylogenetic systems, the details of which are given below.179

2.3.1 BLenD Curve180

The BLenD (Branch Length Difference) curve is a normalized curve irrespective of the sizes of the cophylogeny181

of interest. For any association (between a host and a symbiont) in the cophylogeny, it is possible to obtain182

δ =
lH − lS

L

where lH is the branch length of the host tip, and lS is the branch length of the symbiont tip, and L is the length183

(or height) of the cophylogeny from its root to tips (Fig. 2). We refer to δ (−1 < δ < 1) as the normalized184

Branch Length Difference (BLenD). f̂ (δ), the density function of δ, can then be estimated from all observed185

values of δ in the cophylogeny (δ1, δ2, ..., δn, where n is the total number of associations; each association is186

shown as a line with dotted ends in Fig. 2). This estimation is implemented as kernel density estimation using187

the function density(kernel = "gaussian") in the stats package in R (ver. 4.4.0; R Core Team 2024). We188

hereafter refer to f̂ (δ) as the BLenD curve.189

Now, let us imagine that we have two cophylogenies instead of one, which we will call Cophylogeny A190

and Cophylogeny B. Thus, the distance between Cophylogeny A and Cophylogeny B can be defined as:191

dBLenD(A, B) =

∫ 1

−1

∣∣∣f̂A (δ)− f̂B (δ)
∣∣∣ dδ

where f̂A(δ) and f̂B(δ) are the BLenD curves for Cophylogenies A and B, respectively. dBLenD(A, B) is equal192

to area between the BLenD curves of Cophylogenies A and B (shaded area in Fig. 2). Similarly to Janzen et al.193

(2015), this definition of distance achieves a natural weighing of the contribution of all the f̂ (δ)-differences194

between Cophylogenies A and B; also similarly, the BLenD curve is implemented as a vector of summary195

statistics. In effect, dBLenD(A, B) is equal to zero only when the two BLenD curves compared are identical.196

2.3.2 Tree Sizes197

In addition to the newly designed the BLenD curve, we consider the sizes of the two trees (the numbers of tips in198

the host and symbiont trees) in the cophylogeny as summary statistics because speciation and extinction rates199

will almost certainly affect the numbers of tips in the host and symbiont phylogenies. The distance between200

Cophylogenies A and B, based on the tree sizes of their host phylogenies, can be defined as:201

dhost(A, B) = |NA, host −NB, host|

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2025. ; https://doi.org/10.1101/2025.05.15.653894doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.15.653894
http://creativecommons.org/licenses/by-nc-nd/4.0/


lHlH

LL

LL

lSlS

Host Symbiont

0

1

2

3

−1.0 −0.5 0.0 0.5 1.0
δ (BLenD)

D
en

si
ty

b) BLenD curve

a)

Figure 2: The Branch Length Difference (BLenD) curve as summary statistics for approximate Bayesian com-
putation. (a) For each association (line with dotted ends) in the cophylogeny, we measure three lengths: the
branch length of the host tip lH , the branch length of the symbiont tip lS , and the total length of the cophy-
logeny L (i.e., assumed to the same for the host and symbiont phylogenies). Then, we obtain δ = (lH − lS)/L
for every association in the cophylogeny. This allows us to estimate the density of δ in the entire cophylogeny
(i.e., the BLenD curve) (b) Cophylogenies A (solid line) and B (dashed line) with different speciation rates
have different BLenD curves. In both Cophylogenies A and B, ϵH = ϵS = 0.3. In Cophylogeny A, λH = 0.9,
λS = 0.3, λC = 0.4, λW = 1.7; in Cophylogeny B, λH = 1.1, λS = 1.2, λC = 0.7, λW = 0.3. For each curve,
the number of replicates is 500 and the median density across all replicates is used.

where NA, host and NB, host are the sizes of the host phylogenies in Cophylogenies A and B, respectively.202

Similarly, the distance between Cophylogenies A and B, based on the tree sizes of their symbiont phylogenies,203

can be defined as:204

dsymb(A, B) = |NA, symb −NB, symb|

where NA, symb and NB, symb are the sizes of the symbiont phylogenies in Cophylogenies A and B, respectively.205

Tree sizes are log-transformed before being used to calculate tree-size-based distances.206

2.3.3 Combining Summary Statistics207

Combining different summary statistics in general increases the informativeness of summary statistics for ABC208

(Sunn̊aker et al., 2013), so here we test whether BLenD curve and tree sizes combined can achieve better inference209

results than either of them alone. When the BLenD curve and tree sizes are used in tandem, we standardize the210

summary statistics by dividing them by their standard deviation to ensure that the BLenD curve and each of211

the two tree size statistics have comparable variation among simulations. The distance between Cophylogenies212

A and B is computed as the sum of the BLenD-based and tree-size-based distances.213

2.4 Performance Evaluation214

We are particularly interested in testing this ABC approach’s performance with cophylogenies with rate hetero-215

geneity between the four types of speciation (λH , λS , λC , λW ). We focus our testing on the most basic form of216
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rate heterogeneity, that is, one type of speciation occurs at a higher rate than the other three types. This most ba-217

sic form of rate heterogeneity includes four possibilities: λH>λS=λC=λW , λS>λH=λC=λW , λC>λH=λS=λW ,218

or λW>λH=λS=λC . They correspond to situations where only one type of speciation predominates in the co-219

phylogenetic system. To test the accuracy of the parameter estimator, we perform convergence analyses to220

test whether the approximate posterior distribution approaches the true parameter values when tolerance rate221

approaches zero. We document both the parameter estimates and their residuals (i.e., estimates minus the true222

value).223

Besides the parameter inference problem, we also evaluate how correctly our ABC approach can cate-224

gorically detect a specific type of speciation that occurs at a higher rate than the other three types. A correct225

detection is considered to have been achieved when the type of speciation with the highest true rate also has226

the highest median rate estimate in the approximate posterior distribution. We evaluate how the detection227

correctness of this ABC approach compares to a random guess. To generate simulated cophylogenies for five228

combinations of ϵH and ϵS (0/0, 0.3/0.3, 0.7/0, 0/0.7, 0.7/0.7 for ϵH / ϵS), we run 50000 simulations each229

containing 100 replicates and take the median BLenD density and tree sizes across all replicates.230

2.5 Application to Empirical Data231

The ABC approach is applicable to cophylogenetic datasets where the host and symbiont phylogenies are both232

time-calibrated and have the same stem age. This requirement is important because the timescale has to be233

held consistent for all six of the speciation/extinction processes (Fig. 1). One empirical dataset that meets234

this requirement is a dataset of Batesian mimicry compiled by Van Dam et al. (2024), where beetles in the235

genus Doliops mimic beetles in the genus Pachyrhynchus, both native to the Philippines. This mimicry can be236

seen as a case of commensalism, which is defined as a type of interaction where one party in the interaction237

receives a benefit while the other party receives neither a cost nor a benefit (Bronstein, 2015). Particularly238

in this case, the mimics (Doliops) receive a protective benefit while the models (Pachyrhynchus) are largely239

unaffected. Host-symbiont models have been fitted to this dataset in the original study (Van Dam et al., 2024),240

with mimics considered as symbionts and models as hosts. The stem age for both Pachyrhynchus and Doliops241

has been geologically calibrated for the maximum age of the Philippines and estimated to be 25-30 Myr in the242

original study. We use 27.5 Myr, the midpoint of this range, as the total length of both phylogenies (distance243

from the root to tips). We used the phylo.tracer function from the physketch package (Revell, 2020) to244

extract the two beetle phylogenies from Figure 3 of the original study. We then code the association between245

species manually based on Figure 2 of the original study. For the beetle cophylogeny to be comparable with246

cophylogenies simulated with treeducken, we rescale the beetle cophylogeny such that the total length of the247

beetle cophylogeny is equal to the total length of the simulated cophylogenies (i.e., 27.5 Myr on the realistic248

timescale is convertible to 2 unit time on the treeducken timescale as defined in Dismukes and Heath 2021).249

For this empirical cophylogenetic dataset, we estimate the four speciation rates (λH , λS , λC , λW ) using250

the same ABC framework (see a previous section in Methods) and the same sets of simulated cophylogenies251

that we use for performance evaluation (see a section in Methods). As a necessary step when applying ABC252

to real data (Pantel and Becks, 2023), we also perform posterior predictive checks of model fit to see how253

well the simulatied cophylogenies that are accepted in the ABC framework (i.e., those that contribute to the254

approximate posterior distribution of the parameter estimates) resemble the beetle cophylogeny .255

3 Results256

3.1 Performance257

3.1.1 Rate Estimation258

Here we focus on how different choices of summary statistics compare in terms of convergence. Good conver-259

gence is considered to have been achieved when both the precision (i.e., how narrow the approximate posterior260

distribution is) and accuracy (i.e., how close the approximate posterior distribution is to the true value) of pa-261

rameter estimation are high. Our convergence analyses reveal that, across all combinations of relative extinction262

rate ϵH and ϵS that we consider, parameter estimates generally converge to the true values of the four lambdas263

(λH , λS , λC , λW ) best when a combination of tree sizes and the BLenD curve are used as summary statistics264
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Figure 3: Convergence plots of the speciation rate estimates (λ̂H , λ̂S , λ̂C , λ̂W ) when ϵH = ϵS = 0.3. Residuals
are calculated as estimates minus the true values (λH , λS , λC , λW ). The estimates converge well if the residuals
approach zero as tolerance rate approaches zero. Simulated cophylogenies whose true parameters are known
(vertical text on the right) are used as observed data in the ABC framework. Each observed cophylogeny
contains 500 replicates; the median BLenD density and tree sizes are taken across all replicates before being
used as observations in the ABC. Convergence plots under other assumptions of ϵH and ϵS are presented in
Figs. S1-S4.
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Table 1: Performance of speciation rate estimation and speciation rate heterogeneity detection under different
assumptions of relative extinctions rates (ϵH and ϵS). Four rate parameters are considered: λH - host speciation;
λS - host speciation without host switching; λC - cospeciation; λW - symbiont speciation with host switching.

Relative
extinction
rates

True speciation ratesa Rate estimatesb Rate heterogene-
ity detection

ϵH ϵS λH λS λC λW λ̂H λ̂S λ̂C λ̂W Correctnessc Improvementd

0 0 2.4 0.3 0.3 0.3 2.19 (0.12) 0.41 (0.18) 0.28 (0.12) 0.14 (0.1) 96% 3.832
0 0 0.3 2.4 0.3 0.3 0.26 (0.16) 2.3 (0.16) 0.3 (0.15) 0.21 (0.14) 72% 2.88
0 0 0.3 0.3 2.4 0.3 0.42 (0.19) 0.22 (0.12) 2.17 (0.15) 0.12 (0.09) 94% 3.752
0 0 0.3 0.3 0.3 2.4 0.22 (0.12) 0.75 (0.77) 0.34 (0.18) 1.74 (0.67) 62% 2.48

0.3 0.3 2.4 0.3 0.3 0.3 2.35 (0.25) 0.33 (0.3) 0.3 (0.12) 0.28 (0.09) 96% 3.856
0.3 0.3 0.3 2.4 0.3 0.3 0.33 (0.17) 2.2 (0.4) 0.3 (0.18) 0.58 (0.31) 47% 1.896
0.3 0.3 0.3 0.3 2.4 0.3 0.41 (0.2) 0.24 (0.2) 2.32 (0.19) 0.39 (0.25) 70% 2.808
0.3 0.3 0.3 0.3 0.3 2.4 0.35 (0.16) 0.64 (0.48) 0.27 (0.15) 2.05 (0.44) 68% 2.736

0.7 0 2.4 0.3 0.3 0.3 2.45 (0.2) 0.4 (0.24) 0.24 (0.16) 0.32 (0.22) 96% 3.856
0.7 0 0.3 2.4 0.3 0.3 0.3 (0.11) 2.1 (0.27) 0.28 (0.14) 0.59 (0.3) 42% 1.696
0.7 0 0.3 0.3 2.4 0.3 0.47 (0.26) 0.53 (0.4) 2.16 (0.29) 0.27 (0.12) 64% 2.568
0.7 0 0.3 0.3 0.3 2.4 0.29 (0.12) 0.79 (0.68) 0.35 (0.12) 1.85 (0.73) 65% 2.592

0 0.7 2.4 0.3 0.3 0.3 2.45 (0.14) 0.41 (0.15) 0.28 (0.12) 0.28 (0.12) 98% 3.936
0 0.7 0.3 2.4 0.3 0.3 0.26 (0.16) 1.96 (0.44) 0.34 (0.12) 0.65 (0.39) 51% 2.056
0 0.7 0.3 0.3 2.4 0.3 0.33 (0.44) 0.35 (0.17) 2.37 (0.36) 0.36 (0.25) 69% 2.776
0 0.7 0.3 0.3 0.3 2.4 0.44 (0.18) 0.78 (0.52) 0.22 (0.17) 1.85 (0.47) 66% 2.656

0.7 0.7 2.4 0.3 0.3 0.3 2.36 (0.19) 0.42 (0.26) 0.3 (0.12) 0.23 (0.16) 98% 3.904
0.7 0.7 0.3 2.4 0.3 0.3 0.26 (0.19) 1.71 (0.74) 0.41 (0.21) 0.86 (0.57) 45% 1.792
0.7 0.7 0.3 0.3 2.4 0.3 0.63 (0.26) 0.42 (0.25) 2.14 (0.22) 0.34 (0.21) 58% 2.336
0.7 0.7 0.3 0.3 0.3 2.4 0.25 (0.16) 0.77 (0.72) 0.34 (0.17) 1.72 (0.65) 65% 2.608

Note: tree sizes and the BLenD curve are used in tandem as summary statistics. The tolerance rate used is 1/4096. See Tables S1

& S2 for results for when tree sizes or the BLenD curve are used alone.
a Fixed, known parameter values used to generate the observed data (cophylogeny) in the ABC framework. 500 replicates are

generated for each set of parameter values.
b Means (outside parentheses) and standard deviations (inside parentheses) of the rate estimates. The median BLenD density and

tree sizes are taken across all 500 replicates of the observed data before being used in the ABC.
c Percentage of the 500 replicates of observed data for which the highest rate among λH , λS , λC , λW is detected correctly.
d Actual correctness (see footnote c) divided by the expected correctness of a random guess among λH , λS , λC , λW (25%).

(the third column compared to the first and second columns in Figs. 3, S1-S4). When only tree sizes are used265

(the first column in Figs. 3, S1-S4), the parameter estimates converge well only when λH is the highest among266

the four lambdas; otherwise the parameter estimates converge poorly, having a low precision or low accuracy.267

When only the BLenD curve is used (the second column in Figs. 3, S1-S4), the parameter estimates converge268

well when λS , λC , or λW is the highest among the four lambdas; however, the parameter estimates converge269

poorly when λH is the highest among the four lambdas. Thus, in terms of convergence, tree sizes alone perform270

well when the BLenD curve alone performs poorly; conversely, tree sizes alone perform poorly when the BLenD271

curve alone performs well. The performance of a combination of tree sizes and the BLenD curve (the third272

column in Figs. 3, S1-S4) is generally on par with the better of the two (tree sizes alone and the BLenD curve273

alone) and, in some cases, outperforms the better of the two (Figs. S1 & S2).274

The combination of tree sizes and the BLenD curve is also shown to be generally the best at handling275

different types of rate heterogeneity and the least sensitive to relative extinction rates (Table 1, S1 & S2). The276

tree sizes, when used alone, are especially poor at handling rate heterogeneity where λC is the highest among277

the four lambdas (Table S2), but this type of rate heterogeneity is handled well by a combination of tree sizes278

and the BLenD curve (Table 1). Although the BLenD curve alone performs relatively well with most types of279

rate heterogeneity (Table S2), it is outperformed by a combination of tree sizes and the BLenD curve when λH280

is the highest among the four lambdas and the ϵS is as high as 0.7 (Table 1).281

3.1.2 Rate Heterogeneity Detection282

As for the detection of speciation rate heterogeneity, combining BLenD and tree sizes as summary statistics,283

again, tends to outperform the use of the BLenD curve or tree sizes alone (Table 1, S1 & S2). We are specifically284

interested in identifying the highest rate among the four lambdas λH , λS , λC , λW , and a random guess among285

the four lambdas is expected to have a 25% correctness. An improvement value (i.e., the actual correctness286
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Figure 4: Speciation rate inference from the cophylogenetic dataset of beetle mimicry (Van Dam et al. 2024).
Four rate parameters are considered: λH - host speciation; λS - host speciation without host switching; λC -
cospeciation; λW - symbiont speciation with host switching. The BLenD curve and tree sizes are used in tandem
as summary statistics. ϵH and ϵS are assumed to be 0.3. The tolerance rate used is 1/512. (a) Time-calibrated
cophylogeny of Pachyrhynchus (models, treated as hosts) and Doliops (mimics, treated as symbionts). (b)
Density curves of the speciation rate estimates. (c & d) Posterior predictive checks of model fit. Shown here
are the BLenD curve and tree sizes of the beetle data (solid line) and accepted simulations in the ABC (dots).
Results under other assumptions of ϵH and ϵS are presented in Fig. S5 and Table 2.

divided by 25%) greater than one suggests that the inference performs better than a random guess, and vice287

versa. Our results show that the tree sizes alone perform consistently worse than the random guess when λC is288

the highest among the four lambdas (Table S1), rendering the tree sizes unsuitable summary statistics for this289

purpose. The use of the BLenD curve alone performs better than a random guess in most cases (Table S2), but290

the performance is much improved when the BLenD curve is used in tandem with tree sizes (Table 1).291

When the tree sizes and BLenD curve are used in tandem, the detection of some types of rate hetero-292

geneity is less sensitive to extinction than others (Table 1). The detection correctness, when λH is the highest293

among the four lambdas, remains high (96-98%) regardless of ϵH and ϵS . Similarly, the detection correctness294

when λW is the highest among the four lambdas remains somewhat high (62-68%) regardless of ϵH and ϵS .295

However, the detection correctness for the other two types of rate heterogeneity is more sensitive to ϵH and ϵS .296

Notably, the detection correctness of rate heterogeneity where λS or λC is the highest among the four lambdas297

drops by 24-25% (from 72% to 47% and from 94% to 70%, respectively) when ϵH and ϵS increase from 0 to 0.3298

(Table 1).299

3.2 Rates Inferred from Beetle Mimicry300

Across all the combinations of ϵH and ϵS that we consider, the ABC infers host speciation (λH) as the type301

of speciation with the highest rate (Figs. 4 & S5; Table 2). We infer the mean rate of host speciation to be302

1.80-3.22 events per unit time, while the the rates of symbiont speciation (with or without host switching) and303

cospeciation are inferred to be below 1 event per unit time. In terms of mean rate estimates, host speciation304
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is 4.3-5.1 times faster than the median among all four types of speciation. Regardless of assumptions of ϵH305

and ϵS , host speciation is consistently inferred to have the highest rate among the four types of speciation.306

Our performance evaluation has shown that the ABC approach generally performs well with rate heterogeneity307

where the host speciation rate is much higher than the other three types of speciation rates (see the Performance308

section in Results). In light of these performance evaluation results, the rate estimates from the beetle mimicry309

dataset suggest that host speciation is the fastest among all four types of speciation (i.e., host specieation,310

symbiont speciation without host switching, cospeciation, and symbiont speciation with host switching) in the311

cophylogenetic system. Our posterior predictive checks how that model fit remains reasonably good regardless312

of assumptions of relative extinction rates ϵH and ϵS (Figs. 4 & S5).313

Table 2: Rate estimates (λ̂H , λ̂S , λ̂C , λ̂W ) from the beetle mimicry dataset under different assumptions of ϵH
and ϵS .

ϵH ϵS λ̂H λ̂S λ̂C λ̂W

0 0 1.80 (0.21) 0.36 (0.21) 0.48 (0.12) 0.25 (0.19)

0.3 0.3 2.42 (0.27) 0.65 (0.43) 0.42 (0.18) 0.30 (0.22)

0.7 0 3.22 (0.33) 0.98 (0.43) 0.34 (0.18) 0.35 (0.28)

0 0.7 2.12 (0.26) 0.38 (0.27) 0.46 (0.16) 0.43 (0.22)

0.7 0.7 3.21 (0.42) 0.81 (0.52) 0.35 (0.26) 0.45 (0.27)

Note: for the lambdas, means are outside and standard deviations are inside parentheses. For comparability with Table 1, all

lambdas are not converted to events/Myr.

4 Discussion314

Here we present a proof of concept that an ABC approach can be useful for inferring, simultaneously, rates of315

different types of speciation from a cophylogenetic system. Key to our approach is the newly designed summary316

statistics combining both size-based (tree sizes) and size-free statistics (the BLenD curve). The new approach317

presented here can be used to infer the predominant mode of speciation in a cophylogenetic system, which318

should be an important question to biologists interested in species interactions.319

We show that the new ABC approach can handle several expected technical difficulties reasonably320

well. Specifically, (i) the “Curse of dimensionality” (Sunn̊aker et al., 2013): the ABC simultaneously infers the321

rates of four processes (four parameters). (ii) Stochasticity: both speciation and extinction are simulated as322

stochastic processes in the birth-death co-diversification model, introducing stochasticity to the resulting cophy-323

logenies (Dismukes and Heath, 2021). (iii) Partial information: a cophylogeny contains only partial information324

because extinct lineages and historical association between hosts and symbionts are not known from extant325

cophylogenies. Compared to previous approachs to estimating macroevolutionary rates of species interactions326

from cophylogenies (Alcala et al., 2017; Satler et al., 2019), our new ABC approach allows speciation rate esti-327

mation under a more biologically realistic assumption that speciation-extinction dynamics occur simultaneously328

in the host and symbiont clades on the same timescale. In contrast to Alcala et al. (2017), the new approach329

achieves satisfactory accuracy without the use of highly customized representation of cophylogenies, dimension330

reduction, or machine learning.331

4.1 Theoretical and Practical Considerations332

Recent advances have revealed that extant phylogenetic systems are consistent with a myriad of speciation333

and extinction configurations (Louca and Pennell, 2020). Meaningful speciation rate inference would generally334

require a priori hypotheses about the extinction rates of the system of interest (Morlon et al., 2022, 2024). This335

identifiability issue likely can be extrapolated to cophylogenetic systems as well - in our beetle mimicry example,336

we find that model fit is not obviously better or worse under any particular assumption of relative extinction337

rates ϵH and ϵS (Figs. 4 & S5). However, rate estimates differ considerably under different assumptions338

of relative extinction rates ϵH and ϵS (Table 2). Thus, biologically realistic assumptions about the relative339

extinction rates of hosts and symbionts are critically important for speciation rate inference. Ideally, literature340

should be available on what might be a reasonable assumption of relative extinction rates. Such literature341

is likely system-specific (e.g., on figs and fig wasps, or specialized parasitisms) and requires expert knowledge342

about the system of interest. If such information is unavailable, the user should perform the same speciation343

rate inference under different assumptions of relative extincton rates to test the robustness of their conclusions.344
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We show that, as with phylogenies of single clades (Morlon et al., 2022, 2024), cophylogenies can still provide345

useful insights into diversification as long as realistic assumptions about extinction are made.346

Given the numerous possibilities of rate heterogeneity between four types of speciation, we choose to347

focus on the most basic form of rate heterogeneity, one where one type of speciation predominates in the entire348

system. Testing the ABC approach on simulated datasets with diverse types of rate heterogeneity may extend349

the use of this approach. Other forms of rate heterogeneity may include, for example, situations where two (or350

three) types of speciation predominate. Those more complex forms of rate heterogeneity may not be dealt with351

as easily as those considered in this study; they would deserve to be the focus of a separate study. However, the352

most basic form of rate heterogeneity that we consider in this study may already be able to account for many353

observed patterns in nature, as we show with the beetle mimicry example (Fig. 4).354

When the user performs this inference for an empirical system, it is usually not possible to know what355

the true parameter values are for their system of interest. Caution should be taken with the interpretation of356

results where the four lambda estimates (λ̂H , λ̂S , λ̂C , λ̂W ) differ only slightly. Our performance test results show357

that, while large disparity between the four lambda estimates most likely reflects differences between their true358

rates (λH , λS , λC , λW ), slight differences between the four lambda estimates can arise from errors of the ABC359

(Tables 1, S1 & S2). Thus, although strong disparity between the rate estimates of the four types of speciation360

likely reflects a biological reality, such conclusions may not be appropriate if the rate estimate differences are361

subtle.362

In order to go beyond the proof of concept that we show here, technical improvements would be363

potentially useful. Single-layered feed-forward neural networks, a machine learning technique, have been used364

to improve the accuracy of ABC parameter inference (Csilléry et al., 2012). The improved accuracy is achieved365

through neural-network-based regression to correct rate estimates (Blum and François, 2010). This approach366

currently only works with a few single summary statistics. Adapting this regression-based approach for the use367

of normalized curves (such as BLenD) as summary statistics may be an interesting future direction. Another368

promising direction may be to enhance the ABC in this study with Sequential Monte Carlo (SMC), an algorithm369

that improves the accuracy of inference by iteratively generating new parameter samples from the posterior370

distribution and repeating the ABC procedure (for examples of ABC-SMC for (co)phylogenetic systems, see371

Janzen et al. 2015; Baudet et al. 2015; Sinaimeri et al. 2023).372

As with previous cophylogenetic studies, our ABC cophylogenetic approach is not immune to errors due373

to phylogenetic reconstruction methods, incomplete taxon sampling, or discord between species trees and gene374

trees (e.g., Hughes et al. 2007; Onuferko et al. 2019). Additionally, apparent losses of symbionts in some host375

lineages may be the results of incomplete sampling of host-symbiont associations (Jackson and Charleston 2004;376

Charleston and Perkins 2006). For cophylogenetic studies in general, a statistical framework for quantifying377

these sources of error remains undeveloped but should be a rewarding future direction.378

A related body of research has focused on reconciling the phylogeny of symbionts with that of their hosts379

(e.g., Merkle et al. 2010; Baudet et al. 2015; Sinaimeri et al. 2023; see Charleston and Perkins 2006; Charleston380

and Libeskind-Hadas 2014 for an overview). These studies map the symbiont phylogeny onto the host phylogeny381

to answer where cospeciations, duplications, host switches, and symbiont losses occur along branches of the host382

phylogeny. As an intermediate step toward such reconciliation, recent approaches have used ABC to estimate383

the frequencies of the aforementioned events (Baudet et al., 2015; Sinaimeri et al., 2023). It appears that one384

could, in theory, derive the rates of these events by dividing their frequencies by time. However, such derivation385

is impossible because of the lack of a timescale in these methods. Specifically, temporal constraints imposed by386

tree topologies (e.g., host switches are only possible between temporally coexisting species) are enforced in these387

methods only to the point where the order of events are feasible; this criterion is known as temporal feasibility388

(Stolzer et al., 2012). This means that these methods, in contrast to our approach, do not take into account389

branch lengths and are largely agnostic to the exact intervals between events, making it impossible to derive the390

rates of these events from their frequencies. Therefore, to the best of our knowledge, our study represents the391

first ABC cophylogenetic approach to offer a temporally explicit view of multiple types of macroevolutionary392

events.393

4.2 Broader Implications394

The user might want to interpret the results from our approach in light of results from other methods. For395

instance, the rate estimates from our approach offer valuable information about conservatism, a popular topic396

in the biology of species interactions (Gómez et al., 2010). In symbiont speciation without host switching (λS),397
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the descendant symbiont lineages retain association with the host itself. Differently, in cospeciation (λC), the398

descendant symbiont lineages retain association with the descendants of the ancestral host . In both symbiont399

speciation without host switching (λS) and cospeciation (λC), the descendant symbiont lineages retain their400

association with the ancestral lineage (Fig. 1), contributing to host conservatism of the symbionts. On the401

contrary, in symbiont speciation with host switching (λW ), one of the descendant symbiont lineages switches to402

a new host lineage, reducing the host conservatism of the symbionts (i.e., contributing to host lability). Thus,403

the simultaneous inference of λS , λC , and λW allows patterns of host conservatism to be attribute to two types404

of speciation increasing host conservatism and one type of speciation decreasing it. The approach presented405

here adds to the the existing methods to tease apart the relative contributions of different macroevolutionary406

processes to cophylogenetic patterns (Alcala et al., 2017; Satler et al., 2019), but under a more biologically407

realistic assumption that speciation and extinction occur on the timescale in the host and symbiont clades.408

With this improved biological realism, different speciation processes’ contributions may be more easily compared409

within the same cophylogenetic system; additionally, a certain speciation process’s contributions may also be410

more easily compared between multiple cophylogenetic systems.411

In the beetle mimicry example reanalyzed in this work, we find that the two types of speciation412

increasing host conservatism and the one type decreasing it do not differ in rate considerably (Fig. 4). Van Dam413

et al. (2024) reveals that, in the beetle mimicry system, a number of interactions are conserved over long periods414

of time while others are more labile and transient. This mixed pattern of host conservatism, as our results415

suggest, could have arisen from the fact that speciation events increasing host conservatism are balanced by416

those decreasing it.417

When a cophylogeny is seen as an evolving system of its own, questions can be asked about what affects418

the rates of different types of speciation in a cophylogeny. In phylogenetic comparative research, significant419

efforts have been devoted to studying how orgnismal traits affect speciation rates (Garamszegi, 2014; Revell420

and Harmon, 2022; Morlon et al., 2024). Similar questions can be asked about cophylgenetic systems. For421

example, key innovations have been hypothesized and debated as a driver of speciation for single clades (Miller422

et al., 2023) - do certain types of key innovation also affect the rates of speciation in a cophylogenetic system?423

In the beetle mimicry example, limited dispersal among islands has been shown to drive cospeciation Van Dam424

et al. (2024). Thus, one hypothesis may be that the evolution of long-distance dispersal ability may decrease425

the rate of cospeciation. In a different vein, the old and still influential “escape-and-radiate” hypothesis states426

that the evolution of novel defensive traits in symbionts allows them to “escape” from the hosts and, as a427

result, radiate (Ehrlich and Raven, 1964; Cogni et al., 2022). Then, what are the effects of these defensive traits428

on symbiont speciation without host switching, cospeciation, and symbiont speciation with host switching?429

Comparing the speciation rates of cophylogenetic systems with these key innovations versus those without them430

may provide insights into these questions and hypotheses.431

An interesting potential for the approach presented here lies in the possibility of informing real-world432

problems about public health or conservation. For instance, the coevolutionary history of coronoviruses and433

their mammalian hosts has been shown to be characterized by frequent host switches (Maestri et al., 2024).434

Comparisons of host-switching speciation rates between different strains of viruses (which are essentially clades),435

enabled by the new ABC approach, would allow one to ask whether highly virulent strains switch hosts more or436

less frequently than less virulent strains. Alternatively, one could ask whether historical rates of host-switching437

speciation predict pathogens’ risk of spilling over to other host species in the future. In a different vein, specialism438

(i.e., high host specificity) has been hypothesized as potential evolutionary dead ends that lead to extinction439

(Day et al., 2016). The most extreme cases of specialism in symbionts, such as fig/fig-wasp mutualisms, tend440

to have arisen almost exclusively through cospeciation (Machado et al., 2005). Thus, could the degree to which441

cospeciation predominates in a cophylogenetic system serve as an indicator of extinction risk? Also interested442

in extinction risk, Mulvey et al. (2022) presents a cophylogenetic method to estimate the extinction risk of443

symbionts based on the number of symbiont extinctions, host-switchs, and non-host-switching events. However,444

this method does not take into account the speciation-extinction dynamics that occur simultaneously in the445

host and symbiont clades. An interesting future direction may be to develop an extinction risk index based on446

speciation and extinction rates estimated from a cophylogeny, such as those considered in this study.447

By considering the cophylogenetic system as a whole, the new ABC approach shows the potential for448

some important questions in ecology and evolution to be better understood in light of rates of speciation and449

extinction in both the host and symbiont clades (i.e., in events per unit time). To answer these questions using450

the new approach, more efforts to compile time-calibrated cophylogenies will be needed.451
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de Vienne, D., Refrégier, G., López-Villavicencio, M., Tellier, A., Hood, M., and Giraud, T. (2013). Cospeciation502

vs host-shift speciation: Methods for testing, evidence from natural associations and relation to coevolution.503

New Phytologist, 198(2):347–385.504

de Vienne, D. M., Giraud, T., and Martin, O. C. (2007). A congruence index for testing topological similarity505

between trees. Bioinformatics, 23(23):3119–3124.506

15

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 19, 2025. ; https://doi.org/10.1101/2025.05.15.653894doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.15.653894
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dismukes, W., Braga, M. P., Hembry, D. H., Heath, T. A., and Landis, M. J. (2022). Cophylogenetic methods507

to untangle the evolutionary history of ecological interactions. Annual Review of Ecology, Evolution, and508

Systematics, 53(1):275–298.509

Dismukes, W. and Heath, T. A. (2021). treeducken: An r package for simulating cophylogenetic systems.510

Methods in Ecology and Evolution, 12(8):1358–1364.511

Ehrlich, P. R. and Raven, P. H. (1964). Butterflies and plants: a study in coevolution. Evolution, 18:586–608.512

Garamszegi, L. Z. (2014). Modern Phylogenetic Comparative Methods and Their Application in Evolutionary513

Biology: Concepts and Practice. Springer.514
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