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Abstract 

Machine learning is a robust framework to analyze questions using complex data in a variety of fields. We present def-
initions and recent applications of four key machine learning methods and discuss their advantages and challenges 
in biological research. Through a set of systematically selected case studies, we highlight how machine learning 
models have been used in a range of applications, including phylogenomics, disease prediction, and host taxonomy 
prediction. We identify additional potential areas of integration of machine learning into questions with biological 
relevance. This intersection can be further enhanced through collaboration and innovation on parallelization, inter-
pretability, and preprocessing.
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Background
Machine learning (ML) is a branch of artificial intel-
ligence (AI) now standard for conducting cutting-edge 
research in a plethora of fields, including disciplines 
within biological sciences [1], Fig. 1). Although machine 
learning as a field has existed for decades [2], there is 
still significant room for new applications, especially as 
(1) new datasets emerge, (2) existing datasets increase in 

size, and (3) computational technologies improve. Here, 
we focus on reviewing four different ML algorithms by 
providing in-depth perspectives on their use based on 
recent relevant research across key biological disciplines.

Machine learning focuses on building computational 
systems that learn from data. These systems are ulti-
mately expected to enhance their performance without 
explicit programming [3]. Relative to similar disciplines 
(e.g., statistics), ML explicitly considers the trade-offs 
associated with learning, such as the balance between 
accuracy of predictions and complexity of models, and 
the generalization of models (i.e., their ability to perform 
well on unseen data not used during the training pro-
cess). ML algorithms develop models from data to make 
predictions rather than following static program instruc-
tions. To this end, the process of training the model on 
data is crucial for uncovering patterns that are not imme-
diately evident in the data. Ultimately, a central chal-
lenge in ML involves managing the trade-off between 
the precision of predictions and the ability of models to 
generalize [4]. These trade-offs are specifically related to 
addressing issues such as overfitting, where a model is 
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too complex and fails to generalize well, or underfitting, 
where a model is too simple to capture underlying trends. 
Generalization is therefore a key focus of ML. In practice, 
the goal of ML is to build models that effectively gener-
alize from the training data to new data that follows the 
same distribution [5].

In addition to enabling direct prediction (e.g., forecast-
ing,  classification), ML can also help researchers make 
explanatory inferences from data. In inferential tasks, 
interpretability (i.e., the ability to determine which varia-
bles drive the model’s decisions and how changes in input 
data affect outcomes) and the significance of variables 
often outweigh simple accuracy and performance metrics 
on data used to test the model (i.e., data held out during 
training). Additionally, ML encompasses a wide range 

of algorithms categorized into three main types: super-
vised learning, which relies on labeled data that has been 
annotated to impart context or other meaning; unsuper-
vised learning, which seeks to identify the underlying 
structures of unlabeled data; and reinforcement learn-
ing, which involves models making decisions based on 
rewards received at each step of analysis through iterative 
trial-and-error processes [6]. Although our main focus is 
on supervised learning, we briefly touch upon particular 
scenarios when algorithms can work under either super-
vised or unsupervised learning frameworks (e.g., see sup-
port vector machines below). In general, understanding 
relationships and structures between datapoints within 
increasingly complex datasets is becoming ever more 
crucial and widespread in biological research, and such 

Fig. 1  Overview of key biological research domains where machine learning (ML) is actively applied. Each panel indicates representative tasks 
and commonly used ML approaches, including both unsupervised learning (UL) and supervised learning (SL). In genomics and proteomics, ML 
helps evaluate gene expression patterns, identify SNPs, and model protein function or metabolic networks. In systems biology, models support 
network modeling and cell interaction prediction while in agriculture, ML enables crop yield prediction and pest management. In medicine 
and disease modeling, models like logistic regression and random forest are used for disease prediction and personalized treatment strategies, 
while PCA and t-SNE assist in patient stratification. In ecology and environmental biology, classification tasks such as species distribution modeling 
often leverage random forests and SVMs, while PCA and clustering methods help explore change across gradients. All illustrations are adapted 
from Wikimedia Commons under appropriate open licenses
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questions highlight the need for selecting the appropriate 
specific ML approaches able to address the data [7].

ML has become integral to numerous tasks within 
biological research. For instance, ML has significantly 
enhanced precision, accuracy, and efficiency in pre-
dictive modeling, tackling biological questions at mul-
tiple scales. These range from prediction of molecular 
structures, to “omics”-level analysis, to pest identifica-
tion and ecological forecasting [8–16]. These algorithms 
have enhanced the performance of genomic data analy-
ses and influenced personalized medicine and genetic 
engineering across various domains [17, 18]. Nowadays, 
ML is useful in automating data processing, includ-
ing high-throughput techniques like next-generation 
sequencing and high-content screening [19], reducing 
human error and even boosting the throughput and 
scalability of experiments. ML facilitates the integra-
tion of complex datasets, such as genomic, proteomic, 
and metabolomic data, allowing for comprehensive 
modeling of biological systems (e.g., [20]). These inte-
grations have enabled researchers to incorporate more 
realism into understanding system-level interactions, 
particularly in fields like cancer biology and neurobiol-
ogy [20, 21]. In ecological and environmental research, 
ML models are commonly used to predict environmen-
tal impacts on biodiversity and to guide conservation 
efforts amidst climate change and habitat loss [22, 23]. 
In genomics, the use of ML has become standard prac-
tice due to the complexity and sheer volume of data, 
aiding, for instance, gene expression profiling, single-
nucleotide polymorphism (SNP) identification, and 
genomic sequencing. In the fields of proteomics and 
metabolomics, ML is central to tasks such as protein 
classification, function prediction, and metabolomic 
network analysis [24, 25]. Disease prediction and pre-
vention heavily rely on ML frameworks, which are now 
standard in modeling disease outbreaks and progres-
sion. ML approaches are also critical in systems biology, 
where algorithms often help unravel cellular and inter-
cellular interactions within cells and relations between 
organisms. Similarly, ML is used in modeling ecological 
dynamics, assessing climate-related impacts on biodi-
versity, and supporting conservation biology [26]. In 
agriculture, ML routines are used to predict crop yields, 
optimize resource use, and manage pest control effec-
tively [27]. Most fields of biology which currently gener-
ate and analyze data are likely applying some type of ML 
to build models and predict patterns.

In this review, we highlight four machine learning 
algorithms that are widely adopted, thoroughly tested, 
and form the basis for more advanced techniques in the 
field (Fig.  1). We describe the algorithms, summarize 
their implementation in commonly used programming 

languages (R and Python), and outline recent applica-
tions in biology through a systematic literature review. 
Finally, we provide perspectives on the scalability of these 
tools to larger datasets, as well as future directions in 
the field, including applications of neural networks. We 
aim to provide an up-to-date perspective on the uses 
of ML in biology and establish connections between 
biological disciplines based on ML applications. Our 
review expands on the approach from Tarca et  al. [28]. 
Yet, while Tarca et  al. [28] provided fundamental per-
spectives on statistical and computational methods for 
analyzing high-throughput biological data, our review 
further incorporates recent algorithmic developments, 
examines cross-disciplinary applications, and emphasizes 
practical implementation strategies for contemporary 
biological datasets. Unlike prior reviews which were pri-
marily focused on algorithmic theory or ML intersect-
ing isolated biological domains, we provide practical, 
cross-disciplinary details that highlight methodologi-
cal challenges, the relevance of model interpretability, 
and the need for a close integration of machine learn-
ing with domain-specific knowledge (see also [29–31]). 
We also highlight critical areas of integration where ML 
can significantly improve biological research, especially 
through interdisciplinary collaborations that bridge the 
gap between computational sciences and domain-specific 
knowledge.

Four key machine learning algorithms
We focus on reviewing recent research based on linear 
regression, random forest, gradient boosting machines, 
and support vector machines. For each of these algo-
rithms, we provide an up-to-date introduction, followed 
by a technical description of the approach. Next, we out-
line two selected cases of recent and relatively impactful 
applications of each algorithm. Study cases were selected 
based on a systematic review, described in more detail 
in Additional File 1. We also address relevant challenges 
and considerations, including overfitting, data require-
ments, and interpretability in biological contexts. Finally, 
we discuss neural networks as a potentially relevant field 
for analogous questions where appropriate, as well as 
their impacts and future prospects in the context of bio-
logical research.

Reviewed algorithms were selected based on (1) 
widespread adoption across biological disciplines; (2) 
balance between predictive accuracy and interpret-
ability; (3) complementary methodological approaches 
spanning linear, ensemble, and kernel-based methods; 
(4) accessible implementations in R and Python; and 
(5) their known scalability across diverse dataset sizes 
common in biological research. We also highlight that 
the emphasis on supervised learning reflects current 
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biological research priorities where labeled datasets 
(diseased/healthy, species classifications, functional 
annotations) are increasingly available through large-
scale genomic, proteomic, and phenotypic studies.

For each algorithm, we describe two case studies from 
selected literature (see Additional File 1: Text S1 for 
details; Fig. 2). Briefly, we searched for biological papers 
using these algorithms, sorted them broadly by citation 
count, then selected the top two papers from a subset 
of papers that had been manually reviewed as dem-
onstrating clear outcomes and implications of using 
the target algorithm. We compiled the resulting set of 
papers into a single spreadsheet (Additional File 2; see 
Additional Files 3–6 for algorithm-specific files). Papers 
published before 2020, papers without citations, and 
papers found for more than one model were removed 
(see Additional File 1, Text S2). We then sorted the 
subset of papers based on the number of citations at 
the time of retrieval. For each algorithm, we retained 
the top 50 papers based on citations. Next, we manu-
ally reviewed these papers to select case studies. We 
excluded review articles, book chapters, papers that did 
not explicitly use the method in question, papers that 
did not use it for biological research, or where machine 
learning methods did not inform the main results. We 
selected the top two papers from each set demonstrat-
ing clear outcomes and implications of using the target 
algorithm (Additional File 1, Text S3–S4) (Fig. 3).

Recent uses of machine learning in biology
Ordinary least squares regression
Overview
Ordinary least squares (OLS) is a statistical method that is 
used to estimate the parameters of a linear regression model 
[32]. OLS is sometimes also called a “best-fit line” (Fig. 4). 
This approach focuses on minimizing the sum of the squares 
of the residuals, which reflects differences between the 
observed values in the dataset and the values predicted by 
the model. In linear regression, the relationship between the 
dependent variable, yi , and a set of independent variables, 
matrix xi , is typically expressed as yi = α + βxi . The coeffi-
cients β represent the parameters of the regression and sum-
marize the influence of each input feature on the dependent 
variable. The term α is the intercept and captures the baseline 
value of yi when all xi values are zero. The sum of squared 
residuals, which is explicitly the target of OLS, is given by: 

n
i=1 yi − α − βxi

2 . The least squares approach chooses 
α and β to minimize the residual sum of squares. Note that 
usage of the squared error is an analytical convenience but 
can over-emphasize outlier data points. Using some calculus, 
one can show that the minimizing values of α and β are:

β =

∑n
i=1 (xi − x)

(

yi − y
)

∑n
i=1 (xi − x)2

α = y− βx

Fig. 2  Summary of the review approach used in this paper. We identified relevant recent papers based on a systematic literature review that used 
a predefined combination of terms describing the ML algorithm (first column) and the biological context of the paper (second column). The search 
query (third column) was generated as the full combination of all the terms in the first two columns
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where x refers to the arithmetic mean of a variable across 
the data set.

OLS works best when its underlying assumptions are 
followed, but there exist extensions for various situa-
tions. For example, by changing the squared error to an 
absolute error or even a median error, we can reduce the 
impact of outliers. Alternatively, if prior knowledge is 
available about the expected distribution of parameters, 
Bayesian regressions could provide a viable alternative to 
frequentist frameworks. Defining prior distributions on 
parameters is a form of “regularization,” which typically 
helps models avoid overfitting and generalize better [32]. 
Likewise, if the dependent variable is a discrete class, 
one can modify OLS into a similar model such as logis-
tic regression. Having been deployed in the sciences for 
decades, there are a plethora of OLS variants for many 
specific situations.

Some of the major advantages of OLS relate to its flex-
ibility, interpretability, speed, and explanatory power. 
Specifically, because of the expected linear relationship 
between the response and independent variables, one 
can immediately infer the effect of changing a variable 
value on the prediction. Further, the underlying statis-
tics enable calculating confidence intervals both on the 
predictions themselves as well as the parameter values 
(e.g., often this criteria is used to determine inclusion of 
an independent variable in a model). A key approach for 

Fig. 3  Distribution of publications using the four machine learning algorithm examined in this study to test questions of biological relevance. We 
show results for four different algorithms including gradient boosted trees, linear regression models (two terms), random forest, and support vector 
machines. The vertical dashed line indicates the threshold used in this review to define recent studies (post-2020)

Fig. 4  Schematic representation of a linear regression model. We 
summarize the scatter for a hypothetical dataset (yellow circles), 
a given best-fitting model (blue line), the associated residual values 
(vertical red lines), in accordance to a response variable and a single 
predictor
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estimating uncertainty in parameter estimates is boot-
strapping. Bootstrapping resamples the given data with 
replacement to create a new sample dataset of the same 
size. Then, parameters are re-estimated using the sample 
and are compared to the original parameter estimates by 
creating a distribution of a desired statistic (e.g., mean, 
median, confidence interval) for the target parameter. 
Finally, by requiring only elemental linear algebra, OLS 
is deterministic and fast. OLS often serves as a baseline 
against which other methods must compare.

Usage in biological research
Below, we outline two recent papers that explicitly use 
OLS to address questions on the intersection between 
ML and biology. First, Smith et  al. [33] use a multi-
ple linear regression, under a Bayesian framework (e.g., 
including prior distribution on regression parameters), 
to model the similarity between ecoregions as predicted 
by their geographical distance and environmental condi-
tions. Ecoregions are large cohesive areas of land or water 
that are often described in terms of species assemblages, 
their ecological dynamics, or environmental conditions. 
In their paper, Smith et al. [33] use the Jaccard dissimi-
larity index (log-transformed) to capture the differences 
between ecoregions. This index is particularly used as 
the response variable in the examined models. Smith 
et  al. [33] tests whether distance between ecoregions is 
explained by either (1) abiotic or (2) biotic factors. For 
their abiotic hypotheses, the independent variables were 
distance between regions, their mean homogeneity score, 
and principal components of environmental variables. 
For their biotic hypotheses, the independent variables 
were distance between regions, their mean homogeneity 
score, and either feeding guild or body size of terrestrial 
vertebrate taxa. Analyses also included the squared terms 
of predictors in the different models to account for a pos-
sible nonlinear relationship between their environmental 
predictors and distance between ecoregions. Analyses 
were conducted in Python using the “PyMC3” package 
[34]. Modifications to basic OLS include the Bayesian 
nature of the analysis (although uninformative priors 
were used). Significance of parameters was defined based 
on whether the relevant 95% credible intervals included 
0, as is typical in statistical testing [32].

The second paper reviewed for OLS is Tao et al. [35]. 
In this study, the authors used linear regression models 
to compare estimates of phylogenetic divergence times 
between taxa as estimated by simple or complex models 
of molecular evolution. Complex models, represented 
in this study using GTR + Γ (general time-reversible), 
incorporate variable rates of nucleotide substitution. 
Simple models assume equal substitution rates and base 

frequencies. Simple and complex models were used to 
estimate divergence times across plant and animal clades. 
The explicit focus of the analyses was on node ages (i.e., 
branching times). Linear regression models were used to 
estimate the congruence between complex and simple 
models in terms of node age estimates. Time estimates 
were normalized by the sum of all node ages within each 
data set. The authors expected a linear pattern with low 
dispersion of points between the response and predic-
tor, indicated by a slope close to 1 and high R2 values 
(e.g., slope = 0.95, R2 = 0.99), as a sign of high agreement 
between complex and simple models. We highlight that 
while linear regression was not the primary focus of the 
paper, it was particularly used to illustrate the similarity 
in divergence time estimates between complex models 
with many parameters, and simpler models, which are 
less computationally intensive, in the context of phylog-
enomic datasets.

Implementing linear regression models
Linear regression models can be fit in a number of differ-
ent libraries implemented across multiple programming 
languages. We primarily focus on those in R or Python. 
Regression models can be  fit using the ‘stats’ package 
[36]. A simple linear regression can be  fit with the lm() 
function as indicated below. The training_data object is 
a table (e.g., data.frame) that includes a response variable 
(column y) and predictors (rest of the columns). The test_
data  object has the same structure of columns as train-
ing_data but was generated by splitting the full  dataset 
into train (e.g., training_data, 70% of observations) and 
test sets (e.g., training_data, 30% of observations).

```r 

library(stats) 

# Fit the model with training data 

ols.model <- lm(formula = y ~ ., data =  training_
data) 

# Make predictions with the test data 

preds <- predict(ols.model, newdata=test_data)

```

To run an Ordinary Least Squares (OLS) regres-
sion using Python, one can use the  ‘statsmodels’ library 
[37] and assuming that training_data and test_data are 
pandas DataFrames:
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```python 

import statsmodels.api as sm 

# Load training data 

X = training_data[features_list] 

y = training_data[target_feature] 

# Create Model object 

model = sm.OLS(y, X) 

# Fit the model with training data 

results = model.fit() 

# Make predictions with the test data 

predictions = results.predict(test_data)

```

Support vector machines
Overview
Support vector machines (SVMs) are a set of supervised 
learning methods that are used in applications such as 
image classification, text classification, and various of 
bioinformatics routines. SVMs are often used for clas-
sification but can also be adapted for regression tasks. 
Similarly, although SVMs are generally fit for supervised 
learning, variations of SVMs can also be used under an 
unsupervised framework (e.g., one-class SVM). Before 
the 1980s, almost all learning methods learned linear 
decision surfaces, and the amount of samples in theoreti-
cal statistical studies was assumed to be large or infinite 
to simplify mathematical analyses. However, the size of 
empirical datasets is usually limited, and the relation-
ships between features are almost never linear. In 1995, 
Vladimir N. Vapnik developed a novel approach and 
showed that SVMs work well with nonlinear and high-
dimensional datasets at pattern recognition routines [5]. 
Based on the concept of similarity, SVMs use nonlin-
ear “kernel” functions to transform the data to a higher 
dimension, enabling linear separation by finding optimal 
boundaries (i.e., hyperplanes) that form the best parti-
tion (i.e., decision boundary) between (1) classes and (2) 
support vectors or the data points that lie closest to the 
decision surface (or hyperplane) to maximize the mar-
gins between the classes (Fig.  5). SVMs are flexible in 
defining similarity measures and often generalize well to 
new data. With the advantage of global optimization and 

strong adaptability, SVMs have wide applications in areas 
like protein classification, and computer vision, among 
others.

SVMs are primarily focused on determining the hyper-
plane that optimally divides data into particular classes 
based on the maximum margin [5, 38]. The hyperplane 
is defined such that the minimum distance between 
data points in different groups (i.e., support vectors) is 
maximized. In the case of pairwise data, 

(

xi, yi
)

 , where 
(xi ∈ Rn) are the feature vectors and (yi ∈ {1,−1}

) are the 
class labels, SVMs are focused on solving the following 
optimization problem:

subject to the constraints 
(

yi(w · xi + b) ≥ 1− ξi
)

 for 
every i . Note that (ξi ≥ 0) are slack variables that allow 
misclassification of either challenging or noisy points. 
Similarly, C is a regularization parameter that enables the 
control of the trade-off associated with achieving a high 
margin while reducing training error. The minimization 
itself, however, typically requires an iterative approxima-
tion as the non-linear kernel often precludes an analytical 
solution.

Kernels are the source of SVMs’ intrinsic flexibility 
[39]. Kernels allow for operations in the input space 

[

min
w,b

1

2
�w2 + C

∑m

i=1
ξi

]

Fig. 5  Visual representation of support vector machines (SVMs) 
and its key elements. We present the relationships between two 
features in accordance to two different classes (group A in yellow, 
and group B in red). We show the hyperplane dividing the two 
groups, as well as the margin summarizing the overall division 
between classes
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to be equivalent to operations in a higher dimensional 
feature space [40]. These operations based on kernels 
occur implicitly without the need of computing coordi-
nates in the novel space [41]. For instance, assume that 
two populations of a given species inhabit distinct ele-
vations and this is the key feature distinguishing them. 
However, elevation was not included as a feature in the 
dataset. Under SVMs, the use of a certain kernel on the 
features that were effectively collected in the dataset 
(e.g., latitude and temperature) could result in the indi-
rect inclusion of elevation as a result of the expanded 
multivariate space (e.g., a proxy of elevation).

Mathematically, an SVM kernel function is the dot 
product of two vectors of higher dimensional space. 
Commonly used kernels functions polynomial ker-
nel k

(

xi, xj
)

=
(

γ xi · xj + r
)d , radial basis function 

(RBF) kernel k
(

xi , xj
)

= exp
(

−γ �xi − xj�
2
) , and sigmoid ker-

nel k
(

xi, xj
)

= tanh
(

γ xi · xj + r
)

 , where γ , r , and d are 
parameters that can be adjusted based on the data set.

Mathematically, an SVM kernel function generally 
involves the dot product of one data point with another, 
�xi, xj� =

∑

k xikxjk where k indexes a given feature in 
the vector (e.g., temperature, latitude). These intermedi-
ate dot products can then feed into much more general 
non-linear functions such as the linear kernel or sig-
moid kernel. The specific choice of kernel is beyond the 
scope of this review and is considered part of the larger 
model learning procedure (but see [32] for a detailed 
discussion). Because of this capability for handling non-
linearity, SVMs excel at domains where it is possible to 
draw a continuous “boundary” between data points of 
different classes. The nature of the kernel determines the 
shape capabilities of this boundary (e.g., a linear kernel 
will have boundaries which are linear in the independent 
variables).

When fitting SVMs, practitioners typically focus on 
fitting three critical parameters to optimize their mod-
els. First, the choice of the kernel type determines the 
transformation space of the input data. Each kernel type 
is suited for different types of data. For instance, the lin-
ear kernel is preferred for data that are linearly separa-
ble in the input space. The RBF kernel can handle more 
complex, nonlinear relationships. Second is tuning 
the regularization parameters, particularly the penalty 
parameter C and the kernel-specific parameter γ . These 
two parameters are essential for preventing overfitting 
and ensuring that the model generalizes well to new data. 
C controls the trade-off between achieving a low error on 
the training data and minimizing the model complexity 
for better generalization. The γ parameter defines how 
far the influence of a single training example reaches: 
low values indicate “far” and high values indicate “close.” 
Third, defining the optimal value for the margin (i.e., 

the decision boundary) is crucial. A larger margin can 
increase the generalizability of the classifier. However, if 
the margin is set too wide, it might lead to misclassifica-
tion of the training data, especially if the data are noisy or 
not well-separated.

Usage in biological research
We selected two case studies using SVMs. One paper 
focuses on detecting leaf disease using images [42] and 
the second on inferring taxonomic information of hosts 
based on viral genomes [43]. First, Das et al. [42] imple-
mented a classifier to identify healthy and unhealthy 
tomato plants based on photos of their leaves. The 
authors focused on developing classifiers that could 
help improve the agricultural sector in India, ultimately 
enhancing the living standards of the rural popula-
tion. For this study, the authors collected images from 
an existing database containing images of healthy and 
unhealthy tomato leaves (n = 14,000). They conducted 
image preprocessing steps and masking, including resiz-
ing and conversion to grayscale for further marking of 
target pixels. Color was extracted from RGB channels 
based on the masked images. These features (e.g., RGB 
channels, texture, contours) were then used to train and 
test random forest, logistic regression, and SVMs based 
on healthy and unhealthy classes. The training phase of 
the model was conducted on 60% of the images. The test-
ing set, used for assessing model performance, comprised 
the remaining 40% of the observations. Das et  al. [42] 
recovered a 25–30% higher accuracy for SVMs compared 
to random forest and logistic regression models. Based 
on these results, Das et al. [42] supported the deployment 
of SVM models for real-life applications in automatic dis-
ease detection at early stages.

Second, Young et al. [44] aimed to increase the available 
information on hosts for newly described viral genomes. 
The majority of newly discovered viruses lack taxonomic 
information for host species. The goal of this study was to 
identify genomic features of the virus that could be used 
to accurately predict the taxonomic information of the 
host. The key challenge was representing viral genomes 
in a format that made discriminative information avail-
able for ML procedures. For this study, sequences were 
retrieved from Virus-Host Database (VHDB) and RefSeq. 
Genomes were summarized as nucleotide sequences, 
amino acid sequences, physicochemical properties, and 
predicted PFam domains. From these representations, 
k-mer or domain extraction procedures were conducted 
to obtain a feature matrix. SVMs were trained on 80% 
of the data, with testing conducted on the remaining 
portion of the dataset (75% vs. 25% in alternative analy-
ses). Phylogenetic information was accounted for in the 
analyses using a “holdout” method including an average 
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nucleotide identity filter. The SVM used a linear kernel, 
and performance was evaluated based on not just overall 
accuracy, but also using receiver operating characteristic 
(ROC) curves (equivalent to precision-recall curves and 
other approaches that simultaneously account for both 
false positive and false negative errors). The authors also 
combined different types of features derived from the 
same viral genomes and assessed their ability to predict 
host information. Based on their SVMs, Young et al. [44] 
found that all the analyzed feature sets were predictive of 
host taxonomy. However, combining feature sets had the 
potential to improve predictive accuracy further.

Implementation of SVMs
SVMs are implemented in a range of libraries both in 
Python and R. In R, the e1071 package [45], a wrap-
per of the LIBSVM C++ library, is standard for 
implementing SVMs.

```r 

library(e1071) 

# For regression 

model <- svm(y ~ ., data = training_data, type = 
‘eps-regression’, kernel = ’linear’) 

predictions <- predict(model, newdata = test_data) 

# For classification 

model <- svm(formula = class ~ ., data = training_
data, type = ‘C-classification’, kernel = ’linear’) 

predictions <- predict(model, newdata = test_data)

```

Alternatively, excellent implementations of SVMs can 
be found in tidymodels, a  package that offers a stream-
lined and modern framework for ML modeling within 
R [46]. The package includes functions such as svm_
rbf() and svm_linear() that  facilitate the application of 
SVMs with different kernel types in both regression and 
classification tasks. 

In Python, the primary library for implementing SVMs 
is scikit-learn [47]. This versatile library implements 
functions to fit and analyze SVMs including SVC  (Sup-
port Vector Classification), SVR (Support Vector Regres-
sion), and LinearSVC, an  implementation that supports 
linear and non-linear SVMs. Additionally, the BioPy-
thon toolkit and related libraries offers closely integrated 

SVM-related implementations [48];  https://​biopy​thon.​
org/​wiki/​Scrip​tcent​ral.

```python 

from sklearn import svm 

# For regression 

model = svm.SVR(kernel=’linear’) 

# Fit the model with training data 

model.fit(X, y) 

# Make predictions with the test data 

predictions = model.predict(test_data) 

# For classification 

model = svm.SVC(kernel=’linear’) 

# Fit the model with training data 

model.fit(X, y) 

# Make predictions with the test data 

predictions = model.predict(test_data)

```

Random forest
Overview
Random forest (RF) is a machine learning technique that 
has gained widespread popularity among researchers 
and practitioners due to its versatility and effectiveness, 
particularly in prediction tasks [49, 50]. This approach 
builds on an ensemble of decision trees that, besides 
predictive and inferential tasks, enable feature selection 
procedures as part of analyses and explicitly model inter-
actions between variables [49, 51–53]. RF belongs to the 
ensemble learning family, a framework that combines 
multiple individual models to improve overall predictive 
performance. The “forest” in random forest is composed 
of decision trees (Fig.  6). A decision tree resembles a 
flowchart structure where each internal node represents 
a threshold or definition based on a particular feature. 
Branches represent decision rules and each leaf node 
represents an outcome. Decision trees are simple and 
easily interpretable yet effective models for classification 
and regression procedures [32].

https://biopython.org/wiki/Scriptcentral
https://biopython.org/wiki/Scriptcentral
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There are at least six aspects that are critical to under-
stand the structure, fit, and performance of RF algo-
rithms. First, RF employs a sampling technique called 
bagging. This approach involves training each decision 
tree on a random subset of the training data (sampled 
with replacement, so a data point can occur multiple 
times for the same tree) that ultimately reduces overfit-
ting by introducing diversity among trees. Second, each 
decision tree in the RF is constructed using a subset of 
features selected randomly at each node. This random-
ness ensures that trees are less correlated with each other, 
leading to a more robust model. Third, one of the hyper-
parameters of RF is the number of trees in the forest. 
Typically, increasing the number of trees improves per-
formance while increasing computational cost. Finding 
the optimal number of trees often involves cross-valida-
tion techniques (i.e., trying many different values on sub-
sets of the data while scoring on held-back data). Fourth, 
RF provides a measure of feature importance, which indi-
cates the contribution of each feature in predicting the 
target variable. This information can be useful for feature 
selection and understanding the underlying data. Fifth, 
training each decision tree in RF is independent of the 
others, making it highly parallelizable. Many implemen-
tations of RF leverage parallel computing to speed up the 
training process, especially when dealing with large data-
sets. Sixth and finally, RF has several hyperparameters 
such as the number of features to consider at each split, 
maximum depth of the trees, minimum samples per leaf, 
among others to offer additional flexibility. Grid search 
or randomized search techniques can be used to find the 
optimal combination of hyperparameters [32]. These key 

aspects all contribute to the ongoing effectiveness and 
popularity of RF.

Note that there are a variety of tree-based ensem-
bles that are structurally similar to random forests. For 
instance, we will describe gradient boosted trees later in 
this review. Bayesian additive regression trees are also 
a popular approach that also fall within the tree-based 
ensemble framework [54]. Each method, however, has 
a different training procedure. Just as Bayesian linear 
regression has the same structure as OLS, tree ensembles 
can come in many forms with different trade-offs.

Usage in biological research
We explore the use of random forest in two case stud-
ies. First, Fabris et al. [52] used random forest to discern 
loci underlying both discrete and quantitative traits, 
particularly when studying wild or non-model organ-
isms. RF is becoming increasingly used in ecological and 
population genetics because, unlike traditional meth-
ods, it can efficiently analyze thousands of loci simul-
taneously and account for non-linear interactions. The 
authors described how to prepare data for RF, including 
initial data exploration, the identification of important 
features, and possible confounding factors. They then 
provided guidance on the initiation of RF and the opti-
mization of the algorithm parameters for classification 
and regression. Finally, they summarize methods for 
interpreting the results of RF and identifying trait-asso-
ciated or predictor loci. Second, Brieuc et al. [51] focused 
on looking at how RF can be used effectively in studies 
focused on genotype–phenotype associations, particu-
larly in non-model organisms. This study, structured as 

Fig. 6  Illustration of a random forest algorithm based on three decision trees and a number of features used to train the model (letters in circles). 
We show different decision trees that are trained independently from an initial dataset. Results across decision trees are summarized using 
either majority voting or averaging
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an introductory guide to the intersection between RF and 
ecological and evolutionary genomics, discusses funda-
mental approaches to carefully fit, analyze, assess perfor-
mance, and understand results of RF-based approaches.

Implementation of random forest models
We present implementations of random forests using 
Python and R. In R, random forests can be fit with a given 
dataset using the randomForest package [55] as follows:

```r 

library(randomForest)

# Initialize the random forest model 

rf_model <- randomForest(x = X_train, y = y_train, 
ntree = 100, importance = TRUE, classwt = "bal-
anced") 

# Make predictions on the test data 

rf_pred <- predict(rf_model, X_test)

```

Random forests can also be implemented in Python 
using the scikit-learn library [47]:

```python 

from sklearn.ensemble import RandomForestClassi-
fier 

# Initialize the Random Forest model 

rf_model = RandomForestClassifier(max_depth=2, 
random_state=0) 

# Train the model 

rf_model.fit(X_train, y_train) 

# Make predictions on the test data 

rf_pred = rf_model.predict(X_test)

```

Note that where SVMs have a few choices of kernel 
function and possibly one or two other parameters, RF 
has a plethora of so-called hyperparameters. One can 
vary the number of trees, features considered in split-
ting, the required purity for a node to stop being split, 

and more. Implementations of RF generally expose 
these parameters at model initialization, implying that 
trying different options via cross-validation or similar 
techniques is recommended. Methods like grid search, 
random search, or Bayesian optimization are common 
techniques for systematically optimizing these hyperpa-
rameters. Specifically, grid search exhaustively searches 
through a specified range of parameter values, while 
random search randomly samples from a distribution of 
parameter values. Bayesian optimization uses probabil-
istic models to focus the search on promising regions of 
the parameter space. Cross-validation is typically used 
to evaluate the performance of different parameter con-
figurations and select the best one. Additionally, Out-
Of-Bag (OOB) performance metrics are also commonly 
used in RF. OOB refers to the data points excluded from 
a bootstrap sample when training individual trees in an 
ensemble model. These data points are used as a built-in 
validation set to estimate the predictive power of each 
tree within the forest [11, 33].

Gradient boosting
Overview
Gradient boosted models (GBMs) can be understood 
by extending our prior explanation of random forest. 
Where random forest [49] creates an ensemble of trees 
through bagging, gradient boosting develops each com-
ponent model (i.e., individual decision tree) of the 
ensemble one after the other [32]. This iterative proce-
dure is generally called boosting (Fig. 7). Specifically, let 
fm−1(xi) be the boosted model’s prediction after m− 1 
components have been added. Under this boosting, we 
seek the next iteration, fm(xi) = fm−1(xi)+ Ŵmgm(xi) 
(i.e., one has generated two successive models via GBM 
and seek to refine it by adding a third component to the 
ensemble). For example, one could fix Ŵm = 1 and fit gm 
to minimize the residual loss, L

(

yi − fm−1(xi), gm(xi)
)

 . 
That is, each new component attempts to correct errors 
of the previous model. The way to determine gm and γm 
depends on the exact nature of the boosting. One sub-
type of boosting is called gradient boosted models [56] 
or GBMs. This approach fits gm to minimize the loss on 
the negative gradient,− ∂L(yi)

∂f m−1

 . Then one finds the weight, 
Ŵm to minimize the overall loss, L(yi , fm−1(xi)+ Ŵmgm(xi)

) . 
The gradient helps direct the next model more carefully 
than generic boosting.

The exact capabilities of GBMs depend strongly on 
the underlying model type within the ensemble. For 
example, gradient boosted trees (GBTs) are structurally 
identical to random forests, and they are often applica-
ble to similar problems. Because GBMs use a gradient, 
however, they can take advantage of a continuous loss 
function to speed-up model convergence. Conversely, 
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problems with discontinuous losses may be less suitable 
for GBMs.

Usage in biological research
We selected two case studies that summarize the use of 
gradient boosting in the context of biological research. 
First, Zhang et  al. [57] built a predictive model for bio-
luminscent proteins (BLPs) via sequence-derived features 
for identification. BLPs are valuable for both industry 
and research. In this study, the authors used XGBoost 
(eXtreme Gradient Boosting), an ensemble learning algo-
rithm based on gradient boosted trees [58]. XGBoost is 
well known for its highly flexible and scalable tree struc-
ture enhancement model and its reduction of compu-
tational time and memory for training large-scale data. 
All of these features were used to specifically improve 
on methods and tools previously used for the predic-
tion of BLPs. First, a previously constructed comprehen-
sive dataset consisting of BLP sequences and non-BLP 
sequences composed from bacteria, eukaroyte and 
archaea, was collected from UniProt to be used as train-
ing and predictive data. In order to avoid homology bias, 
the data was first cleaned by using BLASTClust [59]. The 
variety of features which make these sequences identifi-
able and which was characterized by previous work, was 
further encoded via various methods (i.e., natural vec-
tor, composition/transition/distribution, g-gap dipep-
tide composition, and pseudo amino acid composition), 
mainly so that the data could be processed through ML 
algorithms like XGBoost. The dataset was then used 
to develop the prediction model by finding the highest 
area under the curve (AUC) values (again, a measure of 

overall accuracy and the trade-off against false alarms) 
correlated to specific encoded features for which each of 
the species in the set could be optimized for prediction. 
Performance was then measured by testing the data using 
different combinations of encoding features along with 
XGBoost’s internal statistical analyses for cross-valida-
tion. Results indicate strong predictions for species-spe-
cific trained data sets and overall more accurate results 
when compared to other predictive algorithms (e.g., deci-
sion trees, random forests, and AdaBoost).

Second, Yaşar et  al. [43] used multiple ML predic-
tive algorithms (deep neural network, random forest, 
and GBT) to classify three COVID-19 positive patient 
groups (mild, severe, and critical). This study also aimed 
to generate a control group by using blood protein pro-
filing as predictive indicators. The team obtained a data-
set that included age, gender, and 368 proteins obtained 
from blood protein profiling. The number of people in 
each severity group and control group varied. In order 
for the data to be successfully used by the algorithms, it 
first had to be standardized in multiple ways to account 
for inequalities (e.g., missing values, unbalanced sam-
ple size). After the data was cleaned, the ML algorithms 
were trained to make predictions about disease severity. 
The GBT algorithm was worked in as noted,a predic-
tion function was iteratively refined. Residuals computed 
from the difference between predictions and actual data 
subsequently informed the next target in GBT, creating 
new and more accurate residuals which were used as 
training data as further iterations occurred. Using ML 
predictive algorithms, the authors identified 10 proteins 
associated with COVID-19 severity that could be used 

Fig. 7  Diagram showing the temporal patterns in training for Gradient Boosting Trees. We show an initial dataset used for training of a decision 
tree. Subsequent iterations of the boosting sequence are focused on enhancing model performance by reducing error rates. We show correct 
model-based predictions in yellow. Red circles summarize model errors. At the end, model-based predictions are performed on the tree ensemble
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as bio-markers, with two of them (IL6 and LILRB4) sup-
porting results of previous proteomic-based work. GBT 
achieved the best prediction of disease severity based on 
available proteins compared to the rest of the tested algo-
rithms according to the results of various metrics (i.e., 
accuracy, sensitivity, specificity, precision, classification 
error, and others).

Implementation of Gradient Boosting
Libraries to implement GBMs exist in many program-
ming languages. For this review, we offer two code snip-
pets, one in R and one in Python, to demonstrate one 
way to deploy this method in a simple dataset, split into 
train and test sets. First, GBMs can be fit in R using the 
gbm package [60] as follows,

```r  library(gbm)  ## Build a predictive model for 
regression or classification # There are several tuning 
parameters in the gbm package that this example 
code leaves out for  simplicity. Users can specify the 
number of trees, interaction depth, and cross-val-
idation folds,  among other parameters, to tune the 
model.  # Train the model model<- gbm(y ~ ., data 
= training_data)  # Using the model, make predic-
tions on the test data  predictions<- predict(model, 
test_data)```

Alternatively the xgboost library in Python can be used 
to fit a Gradient Boosted Trees model with XGBoost [58]

```python  import xgboost as xgb  # For regression  # 
Initialize the model reg = xgb.XGBRegressor(n_esti-
mators=10)  # Train the model  reg.fit(X_train, 
y_train)  # Make predictions on the test data  pre-
dictions = reg.predict(X_test)  #For classification  # 
Initialize the model  clf = xgb.XGBClassifier(n_esti-
mators=10)  # Train the model  clf.fit(X_train, y_
train)  # Make predictions on the test data  predic-
tions = clf.predict(X_test)```

Challenges of ML‑based inference in biology
Despite the flexibility and potential of machine learning 
models in biological research demonstrated through the 
examined case studies, ML as an analytical framework 
still suffers from various constraints that limit its perfor-
mance and widespread use within disciplines. In this sec-
tion, we briefly review the major pitfalls associated with 
using a machine learning framework to address questions 
of biological relevance. We focus on the models exam-
ined in this paper, detailing the limitations of machine 
learning in biology and examining the potential for future 
advancements. It is essential to critically evaluate limi-
tations to best leverage machine learning in biological 
research. Furthermore, the applicability and reliability of 

these models in the field can directly be understood from 
exploring innovative solutions to these challenges.

A common challenge when applying machine learning 
as an analytical framework to answer biological questions 
relates to selecting the most effective technical implemen-
tation of a given algorithm (see also [61]). For instance, 
although this paper presents only a single SVM frame-
work, there exists a wide range of alternative approaches 
for analyzing SVMs (e.g., svmSomatic, GraDe-SVM, MD-
SVM). The same situation applies to GBMs (e.g., Light-
GBM, XGBoost, CatBoost), linear regressions (e.g., ridge 
regression, lasso regression, Bayesian linear regression), 
random forests (e.g., extra trees, oblique random forests, 
rotation trees), and most—if not all—algorithms within 
a machine learning framework. At this point, users will 
likely face several important questions. First, which of 
the available alternatives should be used? Second, do dif-
ferent implementations affect the results? We encourage 
less experienced users to evaluate model performance 
using the simplest version of the implementation before 
exploring other alternatives (e.g., [62, 63]). In some cases, 
explicit constraints or specific data structures justify the 
use of question-specific models (e.g., TF-Boosted Trees, 
a TensorFlow implementation for structured data prob-
lems). In such cases, users should prioritize more special-
ized approaches in accordance with their knowledge of 
the data, the question, and the algorithm. Trying multiple 
algorithms is an option—and often common practice—
but more importantly, users should critically assess why 
fitting a particular method is advantageous as an a priori 
step before examining its performance.

Another critical aspect to machine learning, closely 
linked to both model fitting and performance assess-
ment, is data visualization (e.g., visual analytics; [64–66]). 
Despite being oftentimes overlooked in favor of model-
focused paradigms when machine learning is introduced, 
data visualizations are integral to understanding both 
the process and results of machine learning. In many 
cases, model performance can be evaluated directly by 
visualizing relevant features, particularly when guided 
by domain knowledge [67]. For instance, in classification 
tasks, visualizations such as logistic regression nomo-
grams can provide a clear understanding of how feature 
values influence a model’s predictions. These visual rep-
resentations allow researchers to distinguish patterns 
that may not be immediately apparent in raw data or 
numerical outputs. Furthermore, assessing model per-
formance or identifying violations of assumptions often 
involve creating plots such as residual plots (e.g., regres-
sion) or ROC curves (e.g., classification, [62]). These 
types of visual tools can help reveal the accuracy, preci-
sion, and limitations of a model. Interpretability is inher-
ently tied to data visualization, as it transforms complex, 
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often abstract model behavior into a format that can be 
easily understood. We highlight that the true success of 
a machine learning model lies not just on its ability to 
predict a given outcome accurately, but in its capacity to 
explain that prediction in an accessible manner [68, 69]. 
Models may capture patterns—some visible, other invis-
ible—that, when visualized appropriately, offer valuable 
insights into underlying biological phenomena [58]. Data 
visualizations, therefore, are not only a tool for model 
validation but also for conveying the nuances of model 
performance. Visualizing data, models, and their per-
formance make the entire process more transparent and 
interpretable.

In the following paragraphs, we will discuss the inter-
sectionality between each of the four algorithms out-
lined in this review, in the context of biological research. 
Although OLS is a basic and widely used method in 
machine learning, it relies on multiple assumptions that 
are often not met by many datasets (e.g., constant error 
variance and independent data points). For instance, in 
a dataset including phylogenetically related organisms, 
OLS may fail to reveal relationships present within but 
not across clades. Conversely, OLS might indicate rela-
tionships across clades that do not exist once phylogeny 
is accounted for. In such cases, phylogenetic generalized 
least squares (PGLS) explicitly incorporates informa-
tion on relationships between terminals through a vari-
ance–covariance matrix and may be a better approach 
[70]. This example shows that the structure of the data-
set is highly relevant for ultimately selecting the appro-
priate analytical tools. Even though OLS has been shown 
to be robust to some violations of its assumptions (e.g., 
[71, 72]), there should be a particular focus on reviewing 
the appropriateness of the method in accordance with 
the focal question. Although linear regression models 
are straightforward to implement, researchers should 
consider whether their aims are predictive or causal. For 
causal inference, careful selection of predictors is crucial. 
Tools such as directed acyclic graphs should be used to 
make explicit the hypothesized relationships between 
variables [73]. In some scenarios, alternative modeling 
approaches may better accommodate the complexities 
of biological data. A flexible and iterative framework of 
model selection and evaluation can enhance the robust-
ness of the findings.

In the context of SVMs, preprocessing and interpret-
ability are critical aspects of this approach. First, pre-
processing of datasets analyzed using SVMs generally 
involves several crucial steps. Normalization is critical 
as SVMs are not scale-invariant, requiring features to be 
scaled to have zero mean and unit variance to ensure the 
model does not bias toward attributes with higher magni-
tude values. Imputation, the process of replacing missing 

data with an estimated values, is necessary for SVMs to 
be successful. Missing values are common in biological 
datasets. Balancing is particularly important in classifica-
tion tasks where class distributions are uneven, as unbal-
anced datasets can lead to biased models that overpredict 
the majority class. Thus, developing new or systemati-
cally enhancing the existing preprocessing techniques 
can significantly improve the performance of SVMs in 
biological applications. Second, relative to simpler mod-
els, the interpretability of SVMs is generally challeng-
ing. Understanding the estimated weights is the primary 
focus, but the use of kernels often leads to the explora-
tion of novel multivariate spaces, making it difficult to 
interpret results in the context of the biological question. 
Despite these challenges, we reviewed two case studies 
in which SVMs were successfully used to answer ques-
tions in the field mostly based on model performance 
(not on variable importance). Enhancing the interpret-
ability of SVMs, either through innovative visualization 
approaches or explanation methods, could make these 
models more accessible to researchers.

Key aspects to account for when analyzing random for-
est models include overfitting, data requirements, model 
complexity, validation, and generalization. First, while 
RF is more robust against overfitting compared to indi-
vidual decision trees, overfitting can still occur, especially 
with noisy or high-dimensional biological data. Careful 
tuning of hyperparameters such as the number of trees, 
maximum depth, and minimum samples per leaf is nec-
essary to mitigate overfitting and ensure generalization 
to unseen data. Another approach to parameter tuning 
involves incorporating domain-specific knowledge into 
the model tuning process. Depending on the dataset used 
with RF, the model is more sensitive to changes in differ-
ent hyperparameters. For example, Huang and Boutros 
[74] found that in a next-generation sequencing quality-
control dataset with a low p/n ratio (variables/samples), 
the mtry parameter (number of variables to sample) had a 
significant impact on the resulting model, while the num-
ber of trees and sample size did not. In an mRNA abun-
dance dataset with a high p/n ratio, all three parameters 
(mtry, number of trees, and sample size) had a significant 
impact on the resulting model [74]. Employing domain 
knowledge allows researchers to focus on tuning specific 
hyperparameters that have the greatest impact on the 
model. This external knowledge can enhance the applica-
bility of RFs into specific datasets. Second, RF performs 
well with large datasets. However, biological datasets 
often pose unique challenges such as imbalanced class 
distributions, missing values, and high dimensionality. 
Pre-processing steps like feature selection, imputation, 
and data balancing are thus crucial to optimize model 
performance and prevent biases. Third, RF can handle 
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complex relationships between genetic variables and phe-
notypic traits, but it may not capture subtle interactions 
or continuous relationships present in biological systems. 
Model interpretation and validation techniques, such as 
permutation importance and partial dependence plots 
(i.e., visualizations used to examine how model predic-
tions perform as (i) one or multiple inputs change while 
(ii) the rest remains constant), help elucidate the relation-
ships between genetic predictors and ecological or evolu-
tionary outcomes. Fourth, assessing the performance and 
generalization of RF models across different populations, 
species, or environmental conditions is essential in bio-
logical studies. Cross-validation techniques, independent 
validation datasets, and robustness testing help ensure 
the reliability and applicability of random forest models 
in diverse ecological and evolutionary contexts.

Finally, GBMs have a powerful predictive perfor-
mance. However, this outstanding performance comes 
with a set of challenges that often needs to be addressed 
in order to maximize their utility in biological research. 
First, GBMs are prone to overfitting, especially with 
noisy or high-dimensional biological data. Appropri-
ately tuning parameters such as learning rate, number of 
trees, and tree depth is thus crucial to achieve an opti-
mal performance across different datasets. Second, the 
computational complexity of GBMs can be high, often 
requiring significant computational resources and time. 
Resource-related limitations are often one of the rea-
sons why GBMs are limited to smaller datasets or pro-
cedures of low complexity. Third, the interpretability of 
GBMs is generally lower compared to simpler models 
[75, 76]. In this context, the ensemble of decision trees 
can obscure the understanding of feature importance 
and interactions (see also RF). However, techniques like 
SHapley Additive exPlanations (SHAP) values or partial 
dependence plots are often used to provide details of the 
model’s decision-making process [77, 78]. SHAP values, 
for example, measure the contribution of each feature 
to individual predictions [77]. SHAP thus allows for a 
more granular understanding of model behavior in the 
context of the relevant task. Partial dependence plots, on 
the other hand, show the relationship between a selected 
feature and the predicted outcome. These plots show 
how changes in feature values impact model predictions. 
Future developments in explainable AI may enhance the 
interpretability of GBMs, potentially making these mod-
els more user-friendly for biological researchers. Fourth, 
handling missing data and imbalanced class distribu-
tions in biological datasets requires robust preprocessing 
strategies that ensure GBMs to produce unbiased predic-
tions [79]. Missing data and class imbalance are, however, 
common in biological datasets. Lastly, rigorous cross-
validation, independent test sets, and domain-specific 

adjustments to the model are often needed to ensure the 
generalization and validation of GBMs across different 
datasets (e.g., varying species, environmental conditions, 
or population structures).

Outlook: deep learning in biology
Although the main focus of this review has been on foun-
dational machine learning and its intersection with bio-
logical fields, deep learning (DL) methods (i.e., neural 
networks) have been gaining strong relevance in mul-
tiple subdisciplines due to their flexibility. The basic DL 
framework is inspired by neuronal connections. Nodes in 
the graph, often referred to as neurons, are connected in 
layers of variable length. The first layer of neurons pro-
cesses the input features and the final layer computes the 
output, using the previous layer as input. In its simplest 
form, neurons in each layer share connections to neurons 
in adjacent layers. The model is generally parameterized 
by a learning algorithm that propagates feedback to the 
internal weights attached to neurons from the training 
data through these connections. This results in a param-
eter-rich model capable of decomposing meaningful sig-
nals from highly complex feature sets [80].

Numerous variants of neural networks and learn-
ing models have emerged over the years. Deep learning 
techniques that excelled at image recognition were being 
applied in biological sciences going as far back as the late 
1990s (e.g., [81–83]). Early applications were limited to 
segmentation of medical imagery [3], disease recogni-
tion [84], and diagnosis [85]. Classification models have 
demonstrated impressive accuracy on test data [86–88] 
but await refinement before adoption into widespread 
clinical use [89]. Other examples of early explorations 
can be found in drug discovery [90], virtual screening 
[91], and functional genomics [90, 92]. Deep learning 
methods have amassed greater traction from the biologi-
cal science community in recent years. For instance, fol-
lowing rapid advances in high-throughput sequencing 
and the popularization of resequencing-based studies 
[93], deep learning techniques have made notable strides 
in variant detection for molecular pathologies [94, 95]. 
First in CASP13 in 2018 [96] and later again CASP14 
in 2020 [97], Google DeepMind’s AlphaFold triumphed 
over competitors demonstrating resounding classifica-
tion performance on protein folding patterns. Today, 
advancing medical technologies, the promise of person-
alized medicine and an abundance of DNA sequence 
data at the population scale have placed biological and 
life sciences at the forefront of explorative research in 
deep learning [98].

Recent breakthroughs in deep learning (e.g., trans-
formers and large language models such as ChatGPT 
and Gemini) have initiated a new age of generative AI 
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(Artificial Intelligence; [99]). Both public and commercial 
attention to this field of science has never been greater. 
There has been a cumulative increase in data center and 
research funding from government and private sectors 
[100–102]. Dramatically improved parallel computing 
infrastructure made possible by fabrication of as low 
as 3 nm process semiconductors [103] and high-speed 
interconnect between compute units [104] pave the way 
for greater advancements. These generative approaches 
show some promise, especially in their breadth of appar-
ent knowledge, but they are prone to “hallucination,” 
sometimes fabricating plausible but incorrect or untested 
concepts as a result of their probabilistic nature and 
weakly curated data sets [105]. As the subfield of artificial 
intelligence and deep learning keeps gaining momentum, 
reintroduction of proven methods and the development 
of new algorithms tailored to the needs of biological sci-
ences is essential.

Our review presents DL and ML as viable approaches 
for answering questions in biological disciplines. The 
choice between traditional machine learning and deep 
learning hinges on the nuanced trade-offs among data 
availability, computational resources, model interpret-
ability, accuracy, and scalability, demanding careful 
consideration tailored to the specific requirements and 
constraints of each biological research question. Below, 
we present three key aspects that highlight the prag-
matic difference between traditional ML and DL. First, 
the relevance of DL is primarily evident in applications 
where large semi-structured data sets are available (e.g., 
images of cells instead of tables). Relative to traditional 
ML algorithms, large DL models have demonstrated an 
unprecedented ability of processing language and visual 
data and demonstrated crude deductive capabilities [106, 
107]. Second, when data is limited, traditional machine 
learning methods often outperform DL models, which 
require extensive datasets for optimal performance. The 
drawback of DL models is their requisite dependence on 
an abundance of high quality and often manually curated 
training data [108]. Second, the training time required 
for DL models can significantly exceed that of traditional 
methods, thus influencing decisions based on computa-
tional resources and time constraints. Recent advances in 
parallel computing hardware and community-accelerated 
software development have enabled the construction of 
gargantuan models comprising billions of parameters, 
though training speed remains an issue for specialized 
analyses [109]. Third, method complexity and interpreta-
bility remain critical considerations,while DL techniques 
often achieve superior accuracy in complex pattern rec-
ognition tasks, this accuracy frequently comes at the cost 
of reduced interpretability and transparency. Conversely, 
foundational machine learning models such as linear 

regressions or decision trees offer greater interpretability, 
making them preferable in scenarios where explainability 
and transparency are crucial, even if they may occasion-
ally sacrifice a degree of predictive accuracy.

Conclusions
As shown by the case studies in biogeography [33], agri-
culture [42], virology [44], clinical diagnostics [43], and 
others, machine learning is expected to keep playing an 
increasingly vital role in biological research in the com-
ing years. The adaptability of machine learning frame-
works enables researchers to tailor models to their 
specific datasets, often yielding predictions that are more 
reliable than other traditional methods. However, chal-
lenges such as parameter tuning, preprocessing, and the 
complexity of biological data must be carefully addressed 
to prevent overfitting and ensure model interpretability. 
We highlight that the incorporation of domain-specific 
knowledge into the model tuning process can be cru-
cial for overcoming issues related to uninterpretable 
results (e.g., [26]). To this end, collaborations between 
data scientists and domain experts across different fields 
can significantly enhance the validity of machine learn-
ing applications [110]. Thus, fostering interdisciplinary 
research by integrating domain-specific expertise into 
machine learning projects help account for model-spe-
cific tradeoffs and further enhance the interpretability of 
results.

Looking ahead, the future of ML in biology will likely 
leverage deep learning techniques, including transform-
ers and large language models, which have already shown 
promise in predicting [111] and designing [112] protein 
structures and understanding single-cell interactions 
[113], among others. Similar to how ML and big data in 
general affect society, the deployment of these advanced 
models raises critical ethical considerations, such as data 
privacy and bias in training data. We highlight the Finda-
ble, Accessible, Interoperable, and Reusable (FAIR) prin-
ciples, a framework that ensures data accessibility with 
its ethical use, and supports transparency and commu-
nity engagement in data sharing [114, 115].
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