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Abstract

Machine learning is a robust framework to analyze questions using complex data in a variety of fields. We present def-
initions and recent applications of four key machine learning methods and discuss their advantages and challenges
in biological research. Through a set of systematically selected case studies, we highlight how machine learning
models have been used in a range of applications, including phylogenomics, disease prediction, and host taxonomy
prediction. We identify additional potential areas of integration of machine learning into questions with biological
relevance. This intersection can be further enhanced through collaboration and innovation on parallelization, inter-

pretability, and preprocessing.
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Background

Machine learning (ML) is a branch of artificial intel-
ligence (AI) now standard for conducting cutting-edge
research in a plethora of fields, including disciplines
within biological sciences [1], Fig. 1). Although machine
learning as a field has existed for decades [2], there is
still significant room for new applications, especially as
(1) new datasets emerge, (2) existing datasets increase in
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size, and (3) computational technologies improve. Here,
we focus on reviewing four different ML algorithms by
providing in-depth perspectives on their use based on
recent relevant research across key biological disciplines.

Machine learning focuses on building computational
systems that learn from data. These systems are ulti-
mately expected to enhance their performance without
explicit programming [3]. Relative to similar disciplines
(e.g., statistics), ML explicitly considers the trade-offs
associated with learning, such as the balance between
accuracy of predictions and complexity of models, and
the generalization of models (i.e., their ability to perform
well on unseen data not used during the training pro-
cess). ML algorithms develop models from data to make
predictions rather than following static program instruc-
tions. To this end, the process of training the model on
data is crucial for uncovering patterns that are not imme-
diately evident in the data. Ultimately, a central chal-
lenge in ML involves managing the trade-off between
the precision of predictions and the ability of models to
generalize [4]. These trade-offs are specifically related to
addressing issues such as overfitting, where a model is
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Fig. 1 Overview of key biological research domains where machine learning (ML) is actively applied. Each panel indicates representative tasks
and commonly used ML approaches, including both unsupervised learning (UL) and supervised learning (SL). In genomics and proteomics, ML
helps evaluate gene expression patterns, identify SNPs, and model protein function or metabolic networks. In systems biology, models support
network modeling and cell interaction prediction while in agriculture, ML enables crop yield prediction and pest management. In medicine

and disease modeling, models like logistic regression and random forest are used for disease prediction and personalized treatment strategies,
while PCA and t-SNE assist in patient stratification. In ecology and environmental biology, classification tasks such as species distribution modeling
often leverage random forests and SVMs, while PCA and clustering methods help explore change across gradients. All illustrations are adapted

from Wikimedia Commons under appropriate open licenses

too complex and fails to generalize well, or underfitting,
where a model is too simple to capture underlying trends.
Generalization is therefore a key focus of ML. In practice,
the goal of ML is to build models that effectively gener-
alize from the training data to new data that follows the
same distribution [5].

In addition to enabling direct prediction (e.g., forecast-
ing, classification), ML can also help researchers make
explanatory inferences from data. In inferential tasks,
interpretability (i.e., the ability to determine which varia-
bles drive the model’s decisions and how changes in input
data affect outcomes) and the significance of variables
often outweigh simple accuracy and performance metrics
on data used to test the model (i.e., data held out during
training). Additionally, ML encompasses a wide range

of algorithms categorized into three main types: super-
vised learning, which relies on labeled data that has been
annotated to impart context or other meaning; unsuper-
vised learning, which seeks to identify the underlying
structures of unlabeled data; and reinforcement learn-
ing, which involves models making decisions based on
rewards received at each step of analysis through iterative
trial-and-error processes [6]. Although our main focus is
on supervised learning, we briefly touch upon particular
scenarios when algorithms can work under either super-
vised or unsupervised learning frameworks (e.g., see sup-
port vector machines below). In general, understanding
relationships and structures between datapoints within
increasingly complex datasets is becoming ever more
crucial and widespread in biological research, and such
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questions highlight the need for selecting the appropriate
specific ML approaches able to address the data [7].

ML has become integral to numerous tasks within
biological research. For instance, ML has significantly
enhanced precision, accuracy, and efficiency in pre-
dictive modeling, tackling biological questions at mul-
tiple scales. These range from prediction of molecular
structures, to “omics”-level analysis, to pest identifica-
tion and ecological forecasting [8—16]. These algorithms
have enhanced the performance of genomic data analy-
ses and influenced personalized medicine and genetic
engineering across various domains [17, 18]. Nowadays,
ML is useful in automating data processing, includ-
ing high-throughput techniques like next-generation
sequencing and high-content screening [19], reducing
human error and even boosting the throughput and
scalability of experiments. ML facilitates the integra-
tion of complex datasets, such as genomic, proteomic,
and metabolomic data, allowing for comprehensive
modeling of biological systems (e.g., [20]). These inte-
grations have enabled researchers to incorporate more
realism into understanding system-level interactions,
particularly in fields like cancer biology and neurobiol-
ogy [20, 21]. In ecological and environmental research,
ML models are commonly used to predict environmen-
tal impacts on biodiversity and to guide conservation
efforts amidst climate change and habitat loss [22, 23].
In genomics, the use of ML has become standard prac-
tice due to the complexity and sheer volume of data,
aiding, for instance, gene expression profiling, single-
nucleotide polymorphism (SNP) identification, and
genomic sequencing. In the fields of proteomics and
metabolomics, ML is central to tasks such as protein
classification, function prediction, and metabolomic
network analysis [24, 25]. Disease prediction and pre-
vention heavily rely on ML frameworks, which are now
standard in modeling disease outbreaks and progres-
sion. ML approaches are also critical in systems biology,
where algorithms often help unravel cellular and inter-
cellular interactions within cells and relations between
organisms. Similarly, ML is used in modeling ecological
dynamics, assessing climate-related impacts on biodi-
versity, and supporting conservation biology [26]. In
agriculture, ML routines are used to predict crop yields,
optimize resource use, and manage pest control effec-
tively [27]. Most fields of biology which currently gener-
ate and analyze data are likely applying some type of ML
to build models and predict patterns.

In this review, we highlight four machine learning
algorithms that are widely adopted, thoroughly tested,
and form the basis for more advanced techniques in the
field (Fig. 1). We describe the algorithms, summarize
their implementation in commonly used programming
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languages (R and Python), and outline recent applica-
tions in biology through a systematic literature review.
Finally, we provide perspectives on the scalability of these
tools to larger datasets, as well as future directions in
the field, including applications of neural networks. We
aim to provide an up-to-date perspective on the uses
of ML in biology and establish connections between
biological disciplines based on ML applications. Our
review expands on the approach from Tarca et al. [28].
Yet, while Tarca et al. [28] provided fundamental per-
spectives on statistical and computational methods for
analyzing high-throughput biological data, our review
further incorporates recent algorithmic developments,
examines cross-disciplinary applications, and emphasizes
practical implementation strategies for contemporary
biological datasets. Unlike prior reviews which were pri-
marily focused on algorithmic theory or ML intersect-
ing isolated biological domains, we provide practical,
cross-disciplinary details that highlight methodologi-
cal challenges, the relevance of model interpretability,
and the need for a close integration of machine learn-
ing with domain-specific knowledge (see also [29-31]).
We also highlight critical areas of integration where ML
can significantly improve biological research, especially
through interdisciplinary collaborations that bridge the
gap between computational sciences and domain-specific
knowledge.

Four key machine learning algorithms

We focus on reviewing recent research based on linear
regression, random forest, gradient boosting machines,
and support vector machines. For each of these algo-
rithms, we provide an up-to-date introduction, followed
by a technical description of the approach. Next, we out-
line two selected cases of recent and relatively impactful
applications of each algorithm. Study cases were selected
based on a systematic review, described in more detail
in Additional File 1. We also address relevant challenges
and considerations, including overfitting, data require-
ments, and interpretability in biological contexts. Finally,
we discuss neural networks as a potentially relevant field
for analogous questions where appropriate, as well as
their impacts and future prospects in the context of bio-
logical research.

Reviewed algorithms were selected based on (1)
widespread adoption across biological disciplines; (2)
balance between predictive accuracy and interpret-
ability; (3) complementary methodological approaches
spanning linear, ensemble, and kernel-based methods;
(4) accessible implementations in R and Python; and
(5) their known scalability across diverse dataset sizes
common in biological research. We also highlight that
the emphasis on supervised learning reflects current
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biological research priorities where labeled datasets
(diseased/healthy, species classifications, functional
annotations) are increasingly available through large-
scale genomic, proteomic, and phenotypic studies.

For each algorithm, we describe two case studies from
selected literature (see Additional File 1: Text S1 for
details; Fig. 2). Briefly, we searched for biological papers
using these algorithms, sorted them broadly by citation
count, then selected the top two papers from a subset
of papers that had been manually reviewed as dem-
onstrating clear outcomes and implications of using
the target algorithm. We compiled the resulting set of
papers into a single spreadsheet (Additional File 2; see
Additional Files 3—6 for algorithm-specific files). Papers
published before 2020, papers without citations, and
papers found for more than one model were removed
(see Additional File 1, Text S2). We then sorted the
subset of papers based on the number of citations at
the time of retrieval. For each algorithm, we retained
the top 50 papers based on citations. Next, we manu-
ally reviewed these papers to select case studies. We
excluded review articles, book chapters, papers that did
not explicitly use the method in question, papers that
did not use it for biological research, or where machine
learning methods did not inform the main results. We
selected the top two papers from each set demonstrat-
ing clear outcomes and implications of using the target
algorithm (Additional File 1, Text S3-S4) (Fig. 3).
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Recent uses of machine learning in biology
Ordinary least squares regression
Overview
Ordinary least squares (OLS) is a statistical method that is
used to estimate the parameters of a linear regression model
[32]. OLS is sometimes also called a “best-fit line” (Fig. 4).
This approach focuses on minimizing the sum of the squares
of the residuals, which reflects differences between the
observed values in the dataset and the values predicted by
the model. In linear regression, the relationship between the
dependent variable, y;, and a set of independent variables,
matrix x; is typically expressed as y; = o + fx;. The coefhi-
cients f represent the parameters of the regression and sum-
marize the influence of each input feature on the dependent
variable. The term « is the intercept and captures the baseline
value of y; when all x; values are zero. The sum of squared
residuals, which is ex2plicitly the target of OLS, is given by:
) (yi —a— ﬂxi) . The least squares approach chooses
« and B to minimize the residual sum of squares. Note that
usage of the squared error is an analytical convenience but
can over-emphasize outlier data points. Using some calculus,
one can show that the minimizing values of & and  are:

S i —%) (9 —9)
Ely'lzl (x; — 5)2

:3:

a=y—px

Biology Term, One of:

ML Term, One of:

OLS
random forest
support vector machine
gradient boosted trees

biodiversity
biogeography
bioinformatics
biology
conservation
developmental biology
disease classification
disease ecologyecology
environmental biology
evolution
genetics
X genomics
immunology
marine biology
medical imaging
metabolomics
microbiology
neurobiology
paleontology
phylogenetics
phylogenomics
proteomics
systems biology

Search Query, e.g.

“OLS” “biodiversity”
“OLS” “biogeography”

“random forest” “genomics”

Fig. 2 Summary of the review approach used in this paper. We identified relevant recent papers based on a systematic literature review that used
a predefined combination of terms describing the ML algorithm (first column) and the biological context of the paper (second column). The search
query (third column) was generated as the full combination of all the terms in the first two columns
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Fig. 4 Schematic representation of a linear regression model. We
summarize the scatter for a hypothetical dataset (yellow circles),
a given best-fitting model (blue line), the associated residual values
(vertical red lines), in accordance to a response variable and a single
predictor

where X refers to the arithmetic mean of a variable across
the data set.

OLS works best when its underlying assumptions are
followed, but there exist extensions for various situa-
tions. For example, by changing the squared error to an
absolute error or even a median error, we can reduce the
impact of outliers. Alternatively, if prior knowledge is
available about the expected distribution of parameters,
Bayesian regressions could provide a viable alternative to
frequentist frameworks. Defining prior distributions on
parameters is a form of “regularization,” which typically
helps models avoid overfitting and generalize better [32].
Likewise, if the dependent variable is a discrete class,
one can modify OLS into a similar model such as logis-
tic regression. Having been deployed in the sciences for
decades, there are a plethora of OLS variants for many
specific situations.

Some of the major advantages of OLS relate to its flex-
ibility, interpretability, speed, and explanatory power.
Specifically, because of the expected linear relationship
between the response and independent variables, one
can immediately infer the effect of changing a variable
value on the prediction. Further, the underlying statis-
tics enable calculating confidence intervals both on the
predictions themselves as well as the parameter values
(e.g., often this criteria is used to determine inclusion of
an independent variable in a model). A key approach for
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estimating uncertainty in parameter estimates is boot-
strapping. Bootstrapping resamples the given data with
replacement to create a new sample dataset of the same
size. Then, parameters are re-estimated using the sample
and are compared to the original parameter estimates by
creating a distribution of a desired statistic (e.g., mean,
median, confidence interval) for the target parameter.
Finally, by requiring only elemental linear algebra, OLS
is deterministic and fast. OLS often serves as a baseline
against which other methods must compare.

Usage in biological research

Below, we outline two recent papers that explicitly use
OLS to address questions on the intersection between
ML and biology. First, Smith et al. [33] use a multi-
ple linear regression, under a Bayesian framework (e.g.,
including prior distribution on regression parameters),
to model the similarity between ecoregions as predicted
by their geographical distance and environmental condi-
tions. Ecoregions are large cohesive areas of land or water
that are often described in terms of species assemblages,
their ecological dynamics, or environmental conditions.
In their paper, Smith et al. [33] use the Jaccard dissimi-
larity index (log-transformed) to capture the differences
between ecoregions. This index is particularly used as
the response variable in the examined models. Smith
et al. [33] tests whether distance between ecoregions is
explained by either (1) abiotic or (2) biotic factors. For
their abiotic hypotheses, the independent variables were
distance between regions, their mean homogeneity score,
and principal components of environmental variables.
For their biotic hypotheses, the independent variables
were distance between regions, their mean homogeneity
score, and either feeding guild or body size of terrestrial
vertebrate taxa. Analyses also included the squared terms
of predictors in the different models to account for a pos-
sible nonlinear relationship between their environmental
predictors and distance between ecoregions. Analyses
were conducted in Python using the “PyMC3” package
[34]. Modifications to basic OLS include the Bayesian
nature of the analysis (although uninformative priors
were used). Significance of parameters was defined based
on whether the relevant 95% credible intervals included
0, as is typical in statistical testing [32].

The second paper reviewed for OLS is Tao et al. [35].
In this study, the authors used linear regression models
to compare estimates of phylogenetic divergence times
between taxa as estimated by simple or complex models
of molecular evolution. Complex models, represented
in this study using GTR+TI (general time-reversible),
incorporate variable rates of nucleotide substitution.
Simple models assume equal substitution rates and base
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frequencies. Simple and complex models were used to
estimate divergence times across plant and animal clades.
The explicit focus of the analyses was on node ages (i.e.,
branching times). Linear regression models were used to
estimate the congruence between complex and simple
models in terms of node age estimates. Time estimates
were normalized by the sum of all node ages within each
data set. The authors expected a linear pattern with low
dispersion of points between the response and predic-
tor, indicated by a slope close to 1 and high R? values
(e.g., slope=0.95, R*=0.99), as a sign of high agreement
between complex and simple models. We highlight that
while linear regression was not the primary focus of the
paper, it was particularly used to illustrate the similarity
in divergence time estimates between complex models
with many parameters, and simpler models, which are
less computationally intensive, in the context of phylog-
enomic datasets.

Implementing linear regression models

Linear regression models can be fit in a number of differ-
ent libraries implemented across multiple programming
languages. We primarily focus on those in R or Python.
Regression models can be fit using the ‘stats’ package
[36]. A simple linear regression can be fit with the Im()
function as indicated below. The training data object is
a table (e.g., data.frame) that includes a response variable
(column y) and predictors (rest of the columns). The test_
data object has the same structure of columns as train-
ing_data but was generated by splitting the full dataset
into train (e.g., training_data, 70% of observations) and
test sets (e.g., training_data, 30% of observations).

LR

r
library(stats)
# Fit the model with training data

ols.model <- Im(formula = y ~ ., data = training_
data)

# Make predictions with the test data

preds <- predict(ols.model, newdata=test_data)

To run an Ordinary Least Squares (OLS) regres-
sion using Python, one can use the ‘statsmodels’ library
[37] and assuming that training_data and test_data are
pandas DataFrames:
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\

“'python

import statsmodels.api as sm

# Load training data

X = training_dataffeatures_list]

y = training_dataftarget_feature]

# Create Model object

model = sm.OLS(y, X)

# Fit the model with training data
results = model.fit()

# Make predictions with the test data

predictions = results.predict(test_data)

Support vector machines

Overview

Support vector machines (SVMs) are a set of supervised
learning methods that are used in applications such as
image classification, text classification, and various of
bioinformatics routines. SVMs are often used for clas-
sification but can also be adapted for regression tasks.
Similarly, although SVMs are generally fit for supervised
learning, variations of SVMs can also be used under an
unsupervised framework (e.g., one-class SVM). Before
the 1980s, almost all learning methods learned linear
decision surfaces, and the amount of samples in theoreti-
cal statistical studies was assumed to be large or infinite
to simplify mathematical analyses. However, the size of
empirical datasets is usually limited, and the relation-
ships between features are almost never linear. In 1995,
Vladimir N. Vapnik developed a novel approach and
showed that SVMs work well with nonlinear and high-
dimensional datasets at pattern recognition routines [5].
Based on the concept of similarity, SVMs use nonlin-
ear “kernel” functions to transform the data to a higher
dimension, enabling linear separation by finding optimal
boundaries (i.e., hyperplanes) that form the best parti-
tion (i.e., decision boundary) between (1) classes and (2)
support vectors or the data points that lie closest to the
decision surface (or hyperplane) to maximize the mar-
gins between the classes (Fig. 5). SVMs are flexible in
defining similarity measures and often generalize well to
new data. With the advantage of global optimization and
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Fig. 5 Visual representation of support vector machines (SVMs)
and its key elements. We present the relationships between two
features in accordance to two different classes (group A in yellow,
and group B in red). We show the hyperplane dividing the two
groups, as well as the margin summarizing the overall division
between classes

strong adaptability, SVMs have wide applications in areas
like protein classification, and computer vision, among
others.

SVMs are primarily focused on determining the hyper-
plane that optimally divides data into particular classes
based on the maximum margin [5, 38]. The hyperplane
is defined such that the minimum distance between
data points in different groups (i.e., support vectors) is
maximized. In the case of pairwise data, (xi, yi), where
(x; € R") are the feature vectors and (y, € {1,—1}) are the
class labels, SVMs are focused on solving the following
optimization problem:

R S m
[fﬁ}fz"w +Cy &

subject to the constraints (y;(w-x;+b) >1—§) for
every i. Note that (§; > 0) are slack variables that allow
misclassification of either challenging or noisy points.
Similarly, C is a regularization parameter that enables the
control of the trade-off associated with achieving a high
margin while reducing training error. The minimization
itself, however, typically requires an iterative approxima-
tion as the non-linear kernel often precludes an analytical
solution.

Kernels are the source of SVMs’ intrinsic flexibility
[39]. Kernels allow for operations in the input space
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to be equivalent to operations in a higher dimensional
feature space [40]. These operations based on kernels
occur implicitly without the need of computing coordi-
nates in the novel space [41]. For instance, assume that
two populations of a given species inhabit distinct ele-
vations and this is the key feature distinguishing them.
However, elevation was not included as a feature in the
dataset. Under SVMs, the use of a certain kernel on the
features that were effectively collected in the dataset
(e.g., latitude and temperature) could result in the indi-
rect inclusion of elevation as a result of the expanded
multivariate space (e.g., a proxy of elevation).

Mathematically, an SVM kernel function is the dot
product of two vectors of higher dimensional space.
Commonly used kernels functions polynomial ker-
nel k(xi,xj) = (yxi X + r)d, radial basis function
(RBF) kernel k(x;,x) = exp (—ylix; — %), and sigmoid ker-
nel k(x,',xj) = tanh (yx; - xj +r), where y, r, and d are
parameters that can be adjusted based on the data set.

Mathematically, an SVM kernel function generally
involves the dot product of one data point with another,
(¥, %)) = >_x xixxjk where k indexes a given feature in
the vector (e.g., temperature, latitude). These intermedi-
ate dot products can then feed into much more general
non-linear functions such as the linear kernel or sig-
moid kernel. The specific choice of kernel is beyond the
scope of this review and is considered part of the larger
model learning procedure (but see [32] for a detailed
discussion). Because of this capability for handling non-
linearity, SVMs excel at domains where it is possible to
draw a continuous “boundary” between data points of
different classes. The nature of the kernel determines the
shape capabilities of this boundary (e.g., a linear kernel
will have boundaries which are linear in the independent
variables).

When fitting SVMs, practitioners typically focus on
fitting three critical parameters to optimize their mod-
els. First, the choice of the kernel type determines the
transformation space of the input data. Each kernel type
is suited for different types of data. For instance, the lin-
ear kernel is preferred for data that are linearly separa-
ble in the input space. The RBF kernel can handle more
complex, nonlinear relationships. Second is tuning
the regularization parameters, particularly the penalty
parameter C and the kernel-specific parameter y. These
two parameters are essential for preventing overfitting
and ensuring that the model generalizes well to new data.
C controls the trade-oft between achieving a low error on
the training data and minimizing the model complexity
for better generalization. The y parameter defines how
far the influence of a single training example reaches:
low values indicate “far” and high values indicate “close”
Third, defining the optimal value for the margin (i.e.,
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the decision boundary) is crucial. A larger margin can
increase the generalizability of the classifier. However, if
the margin is set too wide, it might lead to misclassifica-
tion of the training data, especially if the data are noisy or
not well-separated.

Usage in biological research

We selected two case studies using SVMs. One paper
focuses on detecting leaf disease using images [42] and
the second on inferring taxonomic information of hosts
based on viral genomes [43]. First, Das et al. [42] imple-
mented a classifier to identify healthy and unhealthy
tomato plants based on photos of their leaves. The
authors focused on developing classifiers that could
help improve the agricultural sector in India, ultimately
enhancing the living standards of the rural popula-
tion. For this study, the authors collected images from
an existing database containing images of healthy and
unhealthy tomato leaves (1=14,000). They conducted
image preprocessing steps and masking, including resiz-
ing and conversion to grayscale for further marking of
target pixels. Color was extracted from RGB channels
based on the masked images. These features (e.g., RGB
channels, texture, contours) were then used to train and
test random forest, logistic regression, and SVMs based
on healthy and unhealthy classes. The training phase of
the model was conducted on 60% of the images. The test-
ing set, used for assessing model performance, comprised
the remaining 40% of the observations. Das et al. [42]
recovered a 25—-30% higher accuracy for SVMs compared
to random forest and logistic regression models. Based
on these results, Das et al. [42] supported the deployment
of SVM models for real-life applications in automatic dis-
ease detection at early stages.

Second, Young et al. [44] aimed to increase the available
information on hosts for newly described viral genomes.
The majority of newly discovered viruses lack taxonomic
information for host species. The goal of this study was to
identify genomic features of the virus that could be used
to accurately predict the taxonomic information of the
host. The key challenge was representing viral genomes
in a format that made discriminative information avail-
able for ML procedures. For this study, sequences were
retrieved from Virus-Host Database (VHDB) and RefSeq.
Genomes were summarized as nucleotide sequences,
amino acid sequences, physicochemical properties, and
predicted PFam domains. From these representations,
k-mer or domain extraction procedures were conducted
to obtain a feature matrix. SVMs were trained on 80%
of the data, with testing conducted on the remaining
portion of the dataset (75% vs. 25% in alternative analy-
ses). Phylogenetic information was accounted for in the
analyses using a “holdout” method including an average
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nucleotide identity filter. The SVM used a linear kernel,
and performance was evaluated based on not just overall
accuracy, but also using receiver operating characteristic
(ROC) curves (equivalent to precision-recall curves and
other approaches that simultaneously account for both
false positive and false negative errors). The authors also
combined different types of features derived from the
same viral genomes and assessed their ability to predict
host information. Based on their SVMs, Young et al. [44]
found that all the analyzed feature sets were predictive of
host taxonomy. However, combining feature sets had the
potential to improve predictive accuracy further.

Implementation of SVMs

SVMs are implemented in a range of libraries both in
Python and R. In R, the e1071 package [45], a wrap-
per of the LIBSVM C++ library, is standard for
implementing SVMs.

U
library(el1071)
# For regression

model <- svm(y ~ ., data = training _data, type =
‘eps-regression; kernel = linear’)

predictions <- predict(model, newdata = test_data)
# For classification

model <- svm(formula = class ~ ., data = training_
data, type = ‘C-classification; kernel = linear’)

predictions <- predict(model, newdata = test_data)

Alternatively, excellent implementations of SVMs can
be found in tidymodels, a package that offers a stream-
lined and modern framework for ML modeling within
R [46]. The package includes functions such as svm_
rbf() and svm_linear() that facilitate the application of
SVMs with different kernel types in both regression and
classification tasks.

In Python, the primary library for implementing SVMs
is scikit-learn [47]. This versatile library implements
functions to fit and analyze SVMs including SVC (Sup-
port Vector Classification), SVR (Support Vector Regres-
sion), and LinearSVC, an implementation that supports
linear and non-linear SVMs. Additionally, the BioPy-
thon toolkit and related libraries offers closely integrated
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SVM-related implementations [48]; https://biopython.
org/wiki/Scriptcentral.

"python
from sklearn import svm

# For regression

model = svm.SVR(kernel="linear’)

# Fit the model with training data
model.fit(X;, y)

# Make predictions with the test data
predictions = model.predict(test_data)
# For classification

model = svm.SVC(kernel="linear’)

# Fit the model with training data
model fit(X;, y)

# Make predictions with the test data

predictions = model.predict(test_data)

Random forest

Overview

Random forest (RF) is a machine learning technique that
has gained widespread popularity among researchers
and practitioners due to its versatility and effectiveness,
particularly in prediction tasks [49, 50]. This approach
builds on an ensemble of decision trees that, besides
predictive and inferential tasks, enable feature selection
procedures as part of analyses and explicitly model inter-
actions between variables [49, 51-53]. RF belongs to the
ensemble learning family, a framework that combines
multiple individual models to improve overall predictive
performance. The “forest” in random forest is composed
of decision trees (Fig. 6). A decision tree resembles a
flowchart structure where each internal node represents
a threshold or definition based on a particular feature.
Branches represent decision rules and each leaf node
represents an outcome. Decision trees are simple and
easily interpretable yet effective models for classification
and regression procedures [32].


https://biopython.org/wiki/Scriptcentral
https://biopython.org/wiki/Scriptcentral

Alam et al. BMC Biology (2025) 23:324

Splitting —_ T/ N

Dataset
Decisior% l wﬂ tree 3
+—Root
A oornede Decision tree 2 D
&

Page 10 of 20

) 2 _-Decision node AN
C \ ¢ \F K
H / N A
AN o : SNy
D K G P /\ 7N\ B P » €
v \ \ ’ ! |
s ow /N "wm. ‘A (D E H SN
J B L fo) g \ v N /) E D t
At Y w /N S c N ;N . N /N
3 . N N N Y
E F M 7N\ ' & ¢ b :
I . Y, \N . Y N J N Y N/ Y N Y
N .
Y/ N f V/ \N.\Lea! node v

\ Majority voting /
or

averaging

Final result

Fig. 6 lllustration of a random forest algorithm based on three decision trees and a number of features used to train the model (letters in circles).
We show different decision trees that are trained independently from an initial dataset. Results across decision trees are summarized using

either majority voting or averaging

There are at least six aspects that are critical to under-
stand the structure, fit, and performance of RF algo-
rithms. First, RF employs a sampling technique called
bagging. This approach involves training each decision
tree on a random subset of the training data (sampled
with replacement, so a data point can occur multiple
times for the same tree) that ultimately reduces overfit-
ting by introducing diversity among trees. Second, each
decision tree in the RF is constructed using a subset of
features selected randomly at each node. This random-
ness ensures that trees are less correlated with each other,
leading to a more robust model. Third, one of the hyper-
parameters of RF is the number of trees in the forest.
Typically, increasing the number of trees improves per-
formance while increasing computational cost. Finding
the optimal number of trees often involves cross-valida-
tion techniques (i.e., trying many different values on sub-
sets of the data while scoring on held-back data). Fourth,
RF provides a measure of feature importance, which indi-
cates the contribution of each feature in predicting the
target variable. This information can be useful for feature
selection and understanding the underlying data. Fifth,
training each decision tree in RF is independent of the
others, making it highly parallelizable. Many implemen-
tations of RF leverage parallel computing to speed up the
training process, especially when dealing with large data-
sets. Sixth and finally, RF has several hyperparameters
such as the number of features to consider at each split,
maximum depth of the trees, minimum samples per leaf,
among others to offer additional flexibility. Grid search
or randomized search techniques can be used to find the
optimal combination of hyperparameters [32]. These key

aspects all contribute to the ongoing effectiveness and
popularity of RF.

Note that there are a variety of tree-based ensem-
bles that are structurally similar to random forests. For
instance, we will describe gradient boosted trees later in
this review. Bayesian additive regression trees are also
a popular approach that also fall within the tree-based
ensemble framework [54]. Each method, however, has
a different training procedure. Just as Bayesian linear
regression has the same structure as OLS, tree ensembles
can come in many forms with different trade-offs.

Usage in biological research

We explore the use of random forest in two case stud-
ies. First, Fabris et al. [52] used random forest to discern
loci underlying both discrete and quantitative traits,
particularly when studying wild or non-model organ-
isms. RF is becoming increasingly used in ecological and
population genetics because, unlike traditional meth-
ods, it can efficiently analyze thousands of loci simul-
taneously and account for non-linear interactions. The
authors described how to prepare data for RF, including
initial data exploration, the identification of important
features, and possible confounding factors. They then
provided guidance on the initiation of RF and the opti-
mization of the algorithm parameters for classification
and regression. Finally, they summarize methods for
interpreting the results of RF and identifying trait-asso-
ciated or predictor loci. Second, Brieuc et al. [51] focused
on looking at how RF can be used effectively in studies
focused on genotype—phenotype associations, particu-
larly in non-model organisms. This study, structured as



Alam et al. BMC Biology (2025) 23:324

an introductory guide to the intersection between RF and
ecological and evolutionary genomics, discusses funda-
mental approaches to carefully fit, analyze, assess perfor-
mance, and understand results of RF-based approaches.

Implementation of random forest models

We present implementations of random forests using
Python and R. In R, random forests can be fit with a given
dataset using the randomForest package [55] as follows:

LR

r
library(randomForest)
# Initialize the random forest model

rf_model <- randomForest(x = X_train, y = y_train,
ntree = 100, importance = TRUE, classwt = "bal-
anced")

# Make predictions on the test data

rf_pred <- predict(rf_model, X_test)

T

Random forests can also be implemented in Python
using the scikit-learn library [47]:

T

python

from sklearn.ensemble import RandomForestClassi-

fier
# Initialize the Random Forest model

rf model = RandomForestClassifier(max_depth=2,
random_state=0)

# Train the model
rf_model.fit(X_train, y_train)
# Make predictions on the test data

rf_pred = rf_model.predict(X_test)

LR

Note that where SVMs have a few choices of kernel
function and possibly one or two other parameters, RF
has a plethora of so-called hyperparameters. One can
vary the number of trees, features considered in split-
ting, the required purity for a node to stop being split,
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and more. Implementations of RF generally expose
these parameters at model initialization, implying that
trying different options via cross-validation or similar
techniques is recommended. Methods like grid search,
random search, or Bayesian optimization are common
techniques for systematically optimizing these hyperpa-
rameters. Specifically, grid search exhaustively searches
through a specified range of parameter values, while
random search randomly samples from a distribution of
parameter values. Bayesian optimization uses probabil-
istic models to focus the search on promising regions of
the parameter space. Cross-validation is typically used
to evaluate the performance of different parameter con-
figurations and select the best one. Additionally, Out-
Of-Bag (OOB) performance metrics are also commonly
used in RE. OOB refers to the data points excluded from
a bootstrap sample when training individual trees in an
ensemble model. These data points are used as a built-in
validation set to estimate the predictive power of each
tree within the forest [11, 33].

Gradient boosting

Overview

Gradient boosted models (GBMs) can be understood
by extending our prior explanation of random forest.
Where random forest [49] creates an ensemble of trees
through bagging, gradient boosting develops each com-
ponent model (i.e., individual decision tree) of the
ensemble one after the other [32]. This iterative proce-
dure is generally called boosting (Fig. 7). Specifically, let
fim—1(x;) be the boosted model’s prediction after m — 1
components have been added. Under this boosting, we
seek the next iteration, fi,(x;) = fiu—1(*:) + Uigm (%)
(i.e., one has generated two successive models via GBM
and seek to refine it by adding a third component to the
ensemble). For example, one could fix ', = 1 and fit g,
to minimize the residual loss, L(yi —fm_l(xi),gm(xi)).
That is, each new component attempts to correct errors
of the previous model. The way to determine g, and y;,
depends on the exact nature of the boosting. One sub-
type of boosting is called gradient boosted models [56]
or GBMs. This approach fits g, to minimize the loss on

the negative gradient,_ gj{(m. Then one finds the weight,
m—1

I';y to minimize the overall loss, L(y,f, 1) + Cpgm(x)-
The gradient helps direct the next model more carefully
than generic boosting.

The exact capabilities of GBMs depend strongly on
the underlying model type within the ensemble. For
example, gradient boosted trees (GBTs) are structurally
identical to random forests, and they are often applica-
ble to similar problems. Because GBMs use a gradient,
however, they can take advantage of a continuous loss
function to speed-up model convergence. Conversely,
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problems with discontinuous losses may be less suitable
for GBMs.

Usage in biological research

We selected two case studies that summarize the use of
gradient boosting in the context of biological research.
First, Zhang et al. [57] built a predictive model for bio-
luminscent proteins (BLPs) via sequence-derived features
for identification. BLPs are valuable for both industry
and research. In this study, the authors used XGBoost
(eXtreme Gradient Boosting), an ensemble learning algo-
rithm based on gradient boosted trees [58]. XGBoost is
well known for its highly flexible and scalable tree struc-
ture enhancement model and its reduction of compu-
tational time and memory for training large-scale data.
All of these features were used to specifically improve
on methods and tools previously used for the predic-
tion of BLPs. First, a previously constructed comprehen-
sive dataset consisting of BLP sequences and non-BLP
sequences composed from bacteria, eukaroyte and
archaea, was collected from UniProt to be used as train-
ing and predictive data. In order to avoid homology bias,
the data was first cleaned by using BLASTClust [59]. The
variety of features which make these sequences identifi-
able and which was characterized by previous work, was
further encoded via various methods (i.e., natural vec-
tor, composition/transition/distribution, g-gap dipep-
tide composition, and pseudo amino acid composition),
mainly so that the data could be processed through ML
algorithms like XGBoost. The dataset was then used
to develop the prediction model by finding the highest
area under the curve (AUC) values (again, a measure of

overall accuracy and the trade-off against false alarms)
correlated to specific encoded features for which each of
the species in the set could be optimized for prediction.
Performance was then measured by testing the data using
different combinations of encoding features along with
XGBoost’s internal statistical analyses for cross-valida-
tion. Results indicate strong predictions for species-spe-
cific trained data sets and overall more accurate results
when compared to other predictive algorithms (e.g., deci-
sion trees, random forests, and AdaBoost).

Second, Yasar et al. [43] used multiple ML predic-
tive algorithms (deep neural network, random forest,
and GBT) to classify three COVID-19 positive patient
groups (mild, severe, and critical). This study also aimed
to generate a control group by using blood protein pro-
filing as predictive indicators. The team obtained a data-
set that included age, gender, and 368 proteins obtained
from blood protein profiling. The number of people in
each severity group and control group varied. In order
for the data to be successfully used by the algorithms, it
first had to be standardized in multiple ways to account
for inequalities (e.g., missing values, unbalanced sam-
ple size). After the data was cleaned, the ML algorithms
were trained to make predictions about disease severity.
The GBT algorithm was worked in as noted,a predic-
tion function was iteratively refined. Residuals computed
from the difference between predictions and actual data
subsequently informed the next target in GBT, creating
new and more accurate residuals which were used as
training data as further iterations occurred. Using ML
predictive algorithms, the authors identified 10 proteins
associated with COVID-19 severity that could be used
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as bio-markers, with two of them (IL6 and LILRB4) sup-
porting results of previous proteomic-based work. GBT
achieved the best prediction of disease severity based on
available proteins compared to the rest of the tested algo-
rithms according to the results of various metrics (i.e.,
accuracy, sensitivity, specificity, precision, classification
error, and others).

Implementation of Gradient Boosting

Libraries to implement GBMs exist in many program-
ming languages. For this review, we offer two code snip-
pets, one in R and one in Python, to demonstrate one
way to deploy this method in a simple dataset, split into
train and test sets. First, GBMs can be fit in R using the
gbm package [60] as follows,

“r

‘r library(gbm) ## Build a predictive model for
regression or classification # There are several tuning
parameters in the gbm package that this example
code leaves out for simplicity. Users can specify the
number of trees, interaction depth, and cross-val-
idation folds, among other parameters, to tune the
model. # Train the model model<- gbm(y ~ ., data
= training data) # Using the model, make predic-
tions on the test data predictions<- predict(model,
test_data)' "’

Alternatively the xgboost library in Python can be used
to fit a Gradient Boosted Trees model with XGBoost [58]

“python import xgboost as xgb # For regression #
Initialize the model reg = xgh.XGBRegressor(n_esti-
mators=10) # Train the wmodel regfit(X_train,
y_train) # Make predictions on the test data pre-
dictions = regpredict(X_test) #For classification #
Initialize the model clf = xgb.XGBClassifier(n_esti-
mators=10) # Train the model clf.fit(X train, y_
train) # Make predictions on the test data predic-
tions = clf.predict(X_test)' "

Challenges of ML-based inference in biology

Despite the flexibility and potential of machine learning
models in biological research demonstrated through the
examined case studies, ML as an analytical framework
still suffers from various constraints that limit its perfor-
mance and widespread use within disciplines. In this sec-
tion, we briefly review the major pitfalls associated with
using a machine learning framework to address questions
of biological relevance. We focus on the models exam-
ined in this paper, detailing the limitations of machine
learning in biology and examining the potential for future
advancements. It is essential to critically evaluate limi-
tations to best leverage machine learning in biological
research. Furthermore, the applicability and reliability of
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these models in the field can directly be understood from
exploring innovative solutions to these challenges.

A common challenge when applying machine learning
as an analytical framework to answer biological questions
relates to selecting the most effective technical implemen-
tation of a given algorithm (see also [61]). For instance,
although this paper presents only a single SVM frame-
work, there exists a wide range of alternative approaches
for analyzing SVMs (e.g., svmSomatic, GraDe-SVM, MD-
SVM). The same situation applies to GBMs (e.g., Light-
GBM, XGBoost, CatBoost), linear regressions (e.g., ridge
regression, lasso regression, Bayesian linear regression),
random forests (e.g., extra trees, oblique random forests,
rotation trees), and most—if not all—algorithms within
a machine learning framework. At this point, users will
likely face several important questions. First, which of
the available alternatives should be used? Second, do dif-
ferent implementations affect the results? We encourage
less experienced users to evaluate model performance
using the simplest version of the implementation before
exploring other alternatives (e.g., [62, 63]). In some cases,
explicit constraints or specific data structures justify the
use of question-specific models (e.g., TF-Boosted Trees,
a TensorFlow implementation for structured data prob-
lems). In such cases, users should prioritize more special-
ized approaches in accordance with their knowledge of
the data, the question, and the algorithm. Trying multiple
algorithms is an option—and often common practice—
but more importantly, users should critically assess why
fitting a particular method is advantageous as an a priori
step before examining its performance.

Another critical aspect to machine learning, closely
linked to both model fitting and performance assess-
ment, is data visualization (e.g., visual analytics; [64—66]).
Despite being oftentimes overlooked in favor of model-
focused paradigms when machine learning is introduced,
data visualizations are integral to understanding both
the process and results of machine learning. In many
cases, model performance can be evaluated directly by
visualizing relevant features, particularly when guided
by domain knowledge [67]. For instance, in classification
tasks, visualizations such as logistic regression nomo-
grams can provide a clear understanding of how feature
values influence a model’s predictions. These visual rep-
resentations allow researchers to distinguish patterns
that may not be immediately apparent in raw data or
numerical outputs. Furthermore, assessing model per-
formance or identifying violations of assumptions often
involve creating plots such as residual plots (e.g., regres-
sion) or ROC curves (e.g., classification, [62]). These
types of visual tools can help reveal the accuracy, preci-
sion, and limitations of a model. Interpretability is inher-
ently tied to data visualization, as it transforms complex,
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often abstract model behavior into a format that can be
easily understood. We highlight that the true success of
a machine learning model lies not just on its ability to
predict a given outcome accurately, but in its capacity to
explain that prediction in an accessible manner [68, 69].
Models may capture patterns—some visible, other invis-
ible—that, when visualized appropriately, offer valuable
insights into underlying biological phenomena [58]. Data
visualizations, therefore, are not only a tool for model
validation but also for conveying the nuances of model
performance. Visualizing data, models, and their per-
formance make the entire process more transparent and
interpretable.

In the following paragraphs, we will discuss the inter-
sectionality between each of the four algorithms out-
lined in this review, in the context of biological research.
Although OLS is a basic and widely used method in
machine learning, it relies on multiple assumptions that
are often not met by many datasets (e.g., constant error
variance and independent data points). For instance, in
a dataset including phylogenetically related organisms,
OLS may fail to reveal relationships present within but
not across clades. Conversely, OLS might indicate rela-
tionships across clades that do not exist once phylogeny
is accounted for. In such cases, phylogenetic generalized
least squares (PGLS) explicitly incorporates informa-
tion on relationships between terminals through a vari-
ance—covariance matrix and may be a better approach
[70]. This example shows that the structure of the data-
set is highly relevant for ultimately selecting the appro-
priate analytical tools. Even though OLS has been shown
to be robust to some violations of its assumptions (e.g.,
[71, 72]), there should be a particular focus on reviewing
the appropriateness of the method in accordance with
the focal question. Although linear regression models
are straightforward to implement, researchers should
consider whether their aims are predictive or causal. For
causal inference, careful selection of predictors is crucial.
Tools such as directed acyclic graphs should be used to
make explicit the hypothesized relationships between
variables [73]. In some scenarios, alternative modeling
approaches may better accommodate the complexities
of biological data. A flexible and iterative framework of
model selection and evaluation can enhance the robust-
ness of the findings.

In the context of SVMs, preprocessing and interpret-
ability are critical aspects of this approach. First, pre-
processing of datasets analyzed using SVMs generally
involves several crucial steps. Normalization is critical
as SVMs are not scale-invariant, requiring features to be
scaled to have zero mean and unit variance to ensure the
model does not bias toward attributes with higher magni-
tude values. Imputation, the process of replacing missing
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data with an estimated values, is necessary for SVMs to
be successful. Missing values are common in biological
datasets. Balancing is particularly important in classifica-
tion tasks where class distributions are uneven, as unbal-
anced datasets can lead to biased models that overpredict
the majority class. Thus, developing new or systemati-
cally enhancing the existing preprocessing techniques
can significantly improve the performance of SVMs in
biological applications. Second, relative to simpler mod-
els, the interpretability of SVMs is generally challeng-
ing. Understanding the estimated weights is the primary
focus, but the use of kernels often leads to the explora-
tion of novel multivariate spaces, making it difficult to
interpret results in the context of the biological question.
Despite these challenges, we reviewed two case studies
in which SVMs were successfully used to answer ques-
tions in the field mostly based on model performance
(not on variable importance). Enhancing the interpret-
ability of SVMs, either through innovative visualization
approaches or explanation methods, could make these
models more accessible to researchers.

Key aspects to account for when analyzing random for-
est models include overfitting, data requirements, model
complexity, validation, and generalization. First, while
RF is more robust against overfitting compared to indi-
vidual decision trees, overfitting can still occur, especially
with noisy or high-dimensional biological data. Careful
tuning of hyperparameters such as the number of trees,
maximum depth, and minimum samples per leaf is nec-
essary to mitigate overfitting and ensure generalization
to unseen data. Another approach to parameter tuning
involves incorporating domain-specific knowledge into
the model tuning process. Depending on the dataset used
with RF, the model is more sensitive to changes in differ-
ent hyperparameters. For example, Huang and Boutros
[74] found that in a next-generation sequencing quality-
control dataset with a low p/n ratio (variables/samples),
the m,,, parameter (number of variables to sample) had a
significant impact on the resulting model, while the num-
ber of trees and sample size did not. In an mRNA abun-
dance dataset with a high p/n ratio, all three parameters
(my,,, number of trees, and sample size) had a significant
impact on the resulting model [74]. Employing domain
knowledge allows researchers to focus on tuning specific
hyperparameters that have the greatest impact on the
model. This external knowledge can enhance the applica-
bility of RFs into specific datasets. Second, RF performs
well with large datasets. However, biological datasets
often pose unique challenges such as imbalanced class
distributions, missing values, and high dimensionality.
Pre-processing steps like feature selection, imputation,
and data balancing are thus crucial to optimize model
performance and prevent biases. Third, RF can handle



Alam et al. BMC Biology (2025) 23:324

complex relationships between genetic variables and phe-
notypic traits, but it may not capture subtle interactions
or continuous relationships present in biological systems.
Model interpretation and validation techniques, such as
permutation importance and partial dependence plots
(i.e., visualizations used to examine how model predic-
tions perform as (i) one or multiple inputs change while
(ii) the rest remains constant), help elucidate the relation-
ships between genetic predictors and ecological or evolu-
tionary outcomes. Fourth, assessing the performance and
generalization of RF models across different populations,
species, or environmental conditions is essential in bio-
logical studies. Cross-validation techniques, independent
validation datasets, and robustness testing help ensure
the reliability and applicability of random forest models
in diverse ecological and evolutionary contexts.

Finally, GBMs have a powerful predictive perfor-
mance. However, this outstanding performance comes
with a set of challenges that often needs to be addressed
in order to maximize their utility in biological research.
First, GBMs are prone to overfitting, especially with
noisy or high-dimensional biological data. Appropri-
ately tuning parameters such as learning rate, number of
trees, and tree depth is thus crucial to achieve an opti-
mal performance across different datasets. Second, the
computational complexity of GBMs can be high, often
requiring significant computational resources and time.
Resource-related limitations are often one of the rea-
sons why GBMs are limited to smaller datasets or pro-
cedures of low complexity. Third, the interpretability of
GBMs is generally lower compared to simpler models
[75, 76]. In this context, the ensemble of decision trees
can obscure the understanding of feature importance
and interactions (see also RF). However, techniques like
SHapley Additive exPlanations (SHAP) values or partial
dependence plots are often used to provide details of the
model’s decision-making process [77, 78]. SHAP values,
for example, measure the contribution of each feature
to individual predictions [77]. SHAP thus allows for a
more granular understanding of model behavior in the
context of the relevant task. Partial dependence plots, on
the other hand, show the relationship between a selected
feature and the predicted outcome. These plots show
how changes in feature values impact model predictions.
Future developments in explainable AI may enhance the
interpretability of GBMs, potentially making these mod-
els more user-friendly for biological researchers. Fourth,
handling missing data and imbalanced class distribu-
tions in biological datasets requires robust preprocessing
strategies that ensure GBMs to produce unbiased predic-
tions [79]. Missing data and class imbalance are, however,
common in biological datasets. Lastly, rigorous cross-
validation, independent test sets, and domain-specific
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adjustments to the model are often needed to ensure the
generalization and validation of GBMs across different
datasets (e.g., varying species, environmental conditions,
or population structures).

Outlook: deep learning in biology

Although the main focus of this review has been on foun-
dational machine learning and its intersection with bio-
logical fields, deep learning (DL) methods (i.e., neural
networks) have been gaining strong relevance in mul-
tiple subdisciplines due to their flexibility. The basic DL
framework is inspired by neuronal connections. Nodes in
the graph, often referred to as neurons, are connected in
layers of variable length. The first layer of neurons pro-
cesses the input features and the final layer computes the
output, using the previous layer as input. In its simplest
form, neurons in each layer share connections to neurons
in adjacent layers. The model is generally parameterized
by a learning algorithm that propagates feedback to the
internal weights attached to neurons from the training
data through these connections. This results in a param-
eter-rich model capable of decomposing meaningful sig-
nals from highly complex feature sets [80].

Numerous variants of neural networks and learn-
ing models have emerged over the years. Deep learning
techniques that excelled at image recognition were being
applied in biological sciences going as far back as the late
1990s (e.g., [81-83]). Early applications were limited to
segmentation of medical imagery [3], disease recogni-
tion [84], and diagnosis [85]. Classification models have
demonstrated impressive accuracy on test data [86—88]
but await refinement before adoption into widespread
clinical use [89]. Other examples of early explorations
can be found in drug discovery [90], virtual screening
[91], and functional genomics [90, 92]. Deep learning
methods have amassed greater traction from the biologi-
cal science community in recent years. For instance, fol-
lowing rapid advances in high-throughput sequencing
and the popularization of resequencing-based studies
[93], deep learning techniques have made notable strides
in variant detection for molecular pathologies [94, 95].
First in CASP13 in 2018 [96] and later again CASP14
in 2020 [97], Google DeepMind’s AlphaFold triumphed
over competitors demonstrating resounding classifica-
tion performance on protein folding patterns. Today,
advancing medical technologies, the promise of person-
alized medicine and an abundance of DNA sequence
data at the population scale have placed biological and
life sciences at the forefront of explorative research in
deep learning [98].

Recent breakthroughs in deep learning (e.g., trans-
formers and large language models such as ChatGPT
and Gemini) have initiated a new age of generative Al
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(Artificial Intelligence; [99]). Both public and commercial
attention to this field of science has never been greater.
There has been a cumulative increase in data center and
research funding from government and private sectors
[100-102]. Dramatically improved parallel computing
infrastructure made possible by fabrication of as low
as 3 nm process semiconductors [103] and high-speed
interconnect between compute units [104] pave the way
for greater advancements. These generative approaches
show some promise, especially in their breadth of appar-
ent knowledge, but they are prone to “hallucination,
sometimes fabricating plausible but incorrect or untested
concepts as a result of their probabilistic nature and
weakly curated data sets [105]. As the subfield of artificial
intelligence and deep learning keeps gaining momentum,
reintroduction of proven methods and the development
of new algorithms tailored to the needs of biological sci-
ences is essential.

Our review presents DL and ML as viable approaches
for answering questions in biological disciplines. The
choice between traditional machine learning and deep
learning hinges on the nuanced trade-offs among data
availability, computational resources, model interpret-
ability, accuracy, and scalability, demanding careful
consideration tailored to the specific requirements and
constraints of each biological research question. Below,
we present three key aspects that highlight the prag-
matic difference between traditional ML and DL. First,
the relevance of DL is primarily evident in applications
where large semi-structured data sets are available (e.g.,
images of cells instead of tables). Relative to traditional
ML algorithms, large DL models have demonstrated an
unprecedented ability of processing language and visual
data and demonstrated crude deductive capabilities [106,
107]. Second, when data is limited, traditional machine
learning methods often outperform DL models, which
require extensive datasets for optimal performance. The
drawback of DL models is their requisite dependence on
an abundance of high quality and often manually curated
training data [108]. Second, the training time required
for DL models can significantly exceed that of traditional
methods, thus influencing decisions based on computa-
tional resources and time constraints. Recent advances in
parallel computing hardware and community-accelerated
software development have enabled the construction of
gargantuan models comprising billions of parameters,
though training speed remains an issue for specialized
analyses [109]. Third, method complexity and interpreta-
bility remain critical considerations,while DL techniques
often achieve superior accuracy in complex pattern rec-
ognition tasks, this accuracy frequently comes at the cost
of reduced interpretability and transparency. Conversely,
foundational machine learning models such as linear
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regressions or decision trees offer greater interpretability,
making them preferable in scenarios where explainability
and transparency are crucial, even if they may occasion-
ally sacrifice a degree of predictive accuracy.

Conclusions

As shown by the case studies in biogeography [33], agri-
culture [42], virology [44], clinical diagnostics [43], and
others, machine learning is expected to keep playing an
increasingly vital role in biological research in the com-
ing years. The adaptability of machine learning frame-
works enables researchers to tailor models to their
specific datasets, often yielding predictions that are more
reliable than other traditional methods. However, chal-
lenges such as parameter tuning, preprocessing, and the
complexity of biological data must be carefully addressed
to prevent overfitting and ensure model interpretability.
We highlight that the incorporation of domain-specific
knowledge into the model tuning process can be cru-
cial for overcoming issues related to uninterpretable
results (e.g., [26]). To this end, collaborations between
data scientists and domain experts across different fields
can significantly enhance the validity of machine learn-
ing applications [110]. Thus, fostering interdisciplinary
research by integrating domain-specific expertise into
machine learning projects help account for model-spe-
cific tradeoffs and further enhance the interpretability of
results.

Looking ahead, the future of ML in biology will likely
leverage deep learning techniques, including transform-
ers and large language models, which have already shown
promise in predicting [111] and designing [112] protein
structures and understanding single-cell interactions
[113], among others. Similar to how ML and big data in
general affect society, the deployment of these advanced
models raises critical ethical considerations, such as data
privacy and bias in training data. We highlight the Finda-
ble, Accessible, Interoperable, and Reusable (FAIR) prin-
ciples, a framework that ensures data accessibility with
its ethical use, and supports transparency and commu-
nity engagement in data sharing [114, 115].
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