
BARMPy: Bayesian Additive Regression Models

Python Package

Danielle Van Boxel1,2

1Applied Math GIDP, University of Arizona, Tucson, AZ, USA.
2Data Diversity Lab, University of Arizona, Tucson, AZ, USA.

Contributing authors: vanboxel@math.arizona.edu;

Abstract

We make Bayesian Additive Regression Networks (BARN) available as a Python
package, barmpy, with documentation at https://dvbuntu.github.io/barmpy/ for
general machine learning practitioners. Our object-oriented design is compati-
ble with SciKit-Learn, allowing usage of their tools like cross-validation. To ease
learning to use barmpy, we produce a companion tutorial that expands on ref-
erence information in the documentation. Any interested user can pip install

barmpy from the official PyPi repository. barmpy also serves as a baseline Python
library for generic Bayesian Additive Regression Models.

Keywords: machine learning, Python, MCMC, software

1 Introduction

We implement Bayesian Additive Regression Networks (BARN) as a software pack-
age, barmpy (for Bayesian Additive Regression Models in Python). This algorithm is
another approach to the general regression problem of finding some function, f(xi), to
approximate a noisy relationship, yi = u(xi) + ϵi, where ϵi ∼ N(0, σ) is a noise term
and u(xi) represents some true underlying function. BARN works by sampling from a
posterior distribution on ensembles of neural networks, similar to Bayesian Additive
Regression Trees (BART) (Chipman et al., 2010), but with a different backbone. We
cover some of the necessary practical mathematical background in Section 2, but here
we focus more on implementation designs for the library.

New methods in machine learning and broader mathematics arise all the time, but
they are not always readily accessible to data science practitioners (Patel et al., 2008).

1

ar
X

iv
:2

40
4.

04
73

8v
1

 [
st

at
.C

O
]

 6
 A

pr
 2

02
4

https://dvbuntu.github.io/barmpy/

Part of the explosion of machine learning was the development of libraries like Scikit-
Learn (Pedregosa et al., 2011), TensorFlow (Abadi et al., 2015), and Keras (Chollet
et al., 2015). Such tools not only freed data scientists from having to implement
machine learning algorithms manually, they also provide detailed documentation with
examples. This kind of broad support is the difference between a research algorithm
and an accessible library.

Making barmpy accessible means more than publishing code. We integrate tightly
with existing popular Python machine learning libraries like Scikit-Learn (and Tensor-
Flow as an alternative), described in more detail in Section 3. This includes following
those libraries’ best practices regarding complete documentation and example tutori-
als. We even take the algorithmic improvement beyond Scikit-Learn by implementing
custom model callbacks, such as for early stopping, detailed in Section 3.5. To show
barmpy’s utility and limitations, we conduct benchmark testing and a small case study.
Part of this is computation time information, as such metrics are often a concern for
machine learning practitioners. We note that computation time is itself an accessibility
issue; large language models like ChatGPT are not generally trainable to users with
typical hardware resources (Ouyang et al., 2022). Making a new method like BARN
usable in terms of speed, capability, and understandability makes barmpy more than
an algorithm.

2 Mathematical Background

Whereas we describe the methodology of BARN in detail in , here we review key
points, as relevant to potential users, of BARN as implemented in barmpy. Recall
that the related method, BART, is made of an ensemble of decision trees which sum
to the prediction (Chipman et al., 2010). While structurally similar to a random
forest (Breiman, 2001), BART is distinct in that we train it by sampling from the
posterior distribution of trees. By carefully setting transition, prior, and evidence
probability functions, BART can calculate an MCMC acceptance ratio. This is the
chance of accepting a changed tree. After many iterations over all the trees, we realize
convergence to the desired posterior. BARN works similarly to this but uses neural
networks in the ensemble rather than decision trees. From an algorithmic (and software
design) perspective, however, we need to define the MCMC steps of model proposal,
transition, and posterior.

Consider the transition probabilities, which in a way, encapsulate the model pro-
posal. In BARN, as in BART, we apply Gibbs sampling to ensembling, proposing,
training, and potentially accepting a single neural network at a time. BARN allows
only 2 transitions: adding one neuron or subtracting one neuron. Therefore, we cap-
ture this in a single parameter, p, the probability of adding a neuron to the existing
network. This proposes the new network size, but to fully specify that network, we
also need model weights. That involves training the network with standard optimiza-
tion techniques, again as described in . The final proposed new network in a step is
then the result of this procedure.

To compute the MCMC acceptance ratio, we also need the posterior probability
of the old and new networks. Following Bayes’ rule, we use the prior probability times

2

the evidence probability (ignoring the data probability as that will cancel in the ratio).
Note that in BART, this calculation is the closed form of an integral over the weights
(Chipman et al., 2010). In BARN, this is an approximation, so we only need a closed
form for the prior and evidence. Our default prior depends only on the number of
neurons and uses a discrete Poisson distribution. And finally, the evidence component
of the BARN posterior for model k is the likelihood of the target residual value,
P (Rk|Mk, X), where Rk = Y −

∑
j ̸=k Mj(X) and Mj(X) is the jth neural network

in the ensemble applied to input X. This likelihood assumes a normal distribution
of errors (and sampled σ value for each MCMC step). The prior times this evidence
gives us the posterior, which then multiplied by the transition proposal probability,
contributes to the acceptance ratio. This provides all the key aspects of a BARN
model.

As briefly mentioned, barmpy users can supply their own parameters or methods
for these inputs. Section 3.4 describes in detail how to use Scikit-Learn’s own cross-
validation with barmpy. And because the library is object-oriented, data scientists
familiar with Python and Scikit-Learn can quickly subclass our BARN or NN classes
to their own specifications. A good use case for this would adapt BARN for binary
classification by changing a few methods that control the MCMC process. So even if
barmpy basic methods and defaults are not directly applicable, they can serve as a
starting point for rapid prototyping.

3 Library Features

In developing barmpy, we seek not only to implement BARN for regression and clas-
sification, but also to create an accessible library for generic BART or BARN-like
algorithms. Part of that means weighing different programming language options, not
only for ease of our own coding, but for future open-source development as well. Addi-
tionally, we explore some of the choices behind the overall object-oriented design. This
design includes tight integration with Scikit-Learn (Pedregosa et al., 2011), which
multiplies barmpy’s capabilities. Next, we note the importance of not only documenta-
tion, but fully worked tutorials for practitioners. And finally, we discuss some practical
concerns like distribution on PyPi (PyPi Maintainers, 2023) and GitHub (Escamilla
et al., 2022). Our goals in developing barmpy go beyond merely implementing accurate
statistics.

3.1 Design Considerations

We choose to develop barmpy in Python, even though most BART packages are writ-
ten in R. The original researchers into BART are responsible for multiple packages
in R, including variants (Chipman et al., 2022, McCulloch et al., 2024), generally
available on the Comprehensive R Archive Network (CRAN) (Hornik, 2012). Other
BART-derived methods like MOTR-BART also develop in R (Prado et al., 2021).
While BARN is related to BART, we intend barmpy to be of general use not only
to statisticians, but to professional data scientists as well. And these data scientists
almost overwhelmingly choose Python, partly due to its broader ecosystem of libraries,

3

documentation, and developer tools (Srinath, 2017). Therefore, we develop barmpy to
reach the data scientists where they are.

One particularly relevant Python library we import is Scikit-Learn (Pedregosa
et al., 2011), which implements a huge variety of machine learning algorithms with a
standardized object-oriented application program interface (API). While libraries like
statsmodels provide detailed statistics in a manner similar to R packages (Seabold
and Perktold, 2010), Scikit-Learn focuses on practical usage and extensibility. For
example, statsmodels requires some workarounds to enable using models for predic-
tion on new data, but every Scikit-Learn Estimator has a built-in predict method
for exactly this. Further, Scikit-Learn implements a method for cross-validated hyper-
parameter tuning; anything that subclasses a Scikit-Learn Estimator may tune this
way. barmpy benefits from many of these Scikit-Learn features.

3.2 Regression and Binary Classification

As our BARN ensemble is made of many small neural networks, our fundamental
class is NN, which uses the Scikit-Learn primitive, MLPRegressor (for “Multi-Layer
Perceptron”, i.e. a fully connected neural network). A short example of training BARN
is in Algorithm 1. Our class includes helper methods to compute the various MCMC
log-likelihood and prior probabilities given a network, as this is done on a per-network
level under Gibbs sampling. There are also routines to quickly save or load results,
and handle the weight donation to other neural networks when transitioning. Building
an ensemble of these NN objects, we have the general BARN class. This is more than a
list of NN objects; it includes parameters to customize the algorithm priors. Further,
it has a critical method, BARN.fit, which implements the full BARN procedure with
Gibbs sampling. While not parallelized (as models must be fit sequentially), it does
avoid duplication of computation by caching residual values and only updating them
with the networks that have changed. This turns an O(N) operation, where N is the
number of networks in the ensemble, into an O(1) (i.e. constant time) operation. And
like NN, this class has some helper methods for features like Monte Carlo batch means
analysis and built-in visualization of key results using matplotlib (Hunter, 2007).
From a user perspective, they need only instantiate a BARN object, setup the Bayesian
parameters, and supply data for training.

BARN for classification works similar to regression. Currently, the library supports
binary classification with targets encoded as yi ∈ {0, 1}. In code, one swaps BARN bin

for BARN. After training, BARN bin’s predictions lie in (0, 1), and represent the model’s
predicted probability of the true class being 1, as in a probit model. If desired, one can
directly produce the model z-scores which equate to these probabilities. For usage,
we again offer a small example in Algorithm 1. Internally, BARN bin inherits from the
same base class as BARN, BARN base, which implements most of the sampling logic.
Because of this, BARN bin uses the same MLPRegressor (not MLPClassifier) for each
component of the ensemble. Options like prior distribution mean value are identical,
making it easy to switch between these BARN modes for different problems as needed.

Our BARN implementation comes with reasonable defaults for ease of use by sci-
entific practitioners. We recommend the NN growth transition probability be set to

4

Algorithm 1 BARN in regression and classification using sklearn

from s k l e a rn import data s e t s
import s k l e a rn . met r i c s
from barmpy . barn import BARN, BARN bin
import numpy as np

Regress ion problem
db = data s e t s . l o ad d i ab e t e s ()
model = BARN(num nets=10,

random state=0,
warm start=True ,
s o l v e r=’ l b f g s ’ ,

l =1)
model . f i t (db . data , db . t a r g e t)
pred = model . p r ed i c t (db . data)
print (s k l e a rn . met r i c s . r 2 s c o r e (db . target , pred))

C l a s s i f i c a t i o n problem
bc = data s e t s . l o ad b r e a s t c an c e r ()
bmodel = BARN bin(num nets=10,

random state=0,
warm start=True ,
s o l v e r=’ l b f g s ’ ,

l =1)
bmodel . f i t (bc . data , bc . t a r g e t)
pred = bmodel . p r ed i c t (bc . data)
print (s k l e a rn . met r i c s . c l a s s i f i c a t i o n r e p o r t (bc . target , np . round(pred)))

p = 0.4. This mildly encourages the algorithm to test relatively small networks, mit-
igating the chance of a single network dominating the ensemble. Similarly, we advise
setting the network size prior distribution mean to λ = 1 or another small value to
again encourage networks to be individually weak learners. If one is using BARN for
pure architecture search (i.e. only a single network in the ensemble), however, then
λ should be larger to accommodate more complexity. Additionally, users can supply
their own generic probability mass function if they wish to control the prior more
carefully. The number of networks in the ensemble, as mentioned, is itself a settable
parameter. We default to 10 as this balances ensembling to improve generalization
with increased computation time from additional network training. For the neural net-
work training itself, parameters like learning rate and weight regularization penalties
are more problem-dependent. We suggest learning rate lr = 0.01 and L1L2 regular-
ization r = 0.01, but note that users should experiment with these particular settings.
Additional details on tweakable parameters are available in the BARN documentation
(Van Boxel, 2023).

5

3.3 Improving Software Accessibility

To further ease usage and additional development, we have adopted several more
general software engineering principles. First, being a Python library, we naturally
distribute barmpy as a package on PyPi.org (PyPi Maintainers, 2023). This enables
hassle-free installation for new users. Next, as noted earlier, we maintain all devel-
opment history in a Git repository on Github. To ensure functional correctness even
in the face of seemingly unrelated changes, we run a suite a unit tests with every
commit to the main branch. Each test runs a small chunk of code using barmpy as a
library and compares the output to a known good result. When a test fails, we can
see exactly where and if this needs attention. In addition to assisting with develop-
ment, unit test also act as examples for new users. Beyond such rigorous tests, we
also wrote and deployed a complete walkthrough via an R Markdown (Baumer and
Udwin, 2015) script. This walkthrough describes a problem end-to-end, from generat-
ing data to running BARN and interpreting the results. Further, because this is in R
Markdown, users can run the code chunks themselves (by knitting the script or copy-
ing it into a Python terminal). Example output is provided, as in Figure 1, for users
to verify their results, thereby ensuring they can learn how to apply barmpy on their
own. Finally, when users or developers need more details, they can review the low-
level documentation we developed using Python’s Sphinx library (Brandl, 2021). This
documentation is in part automatically generated from the BARN Python docstrings
themselves, though we include additional mathematical information at an appropri-
ate level, such as for doing cross-validation on BARN with Scikit-Learn. The source
documents are part of the repository itself, but they are also online as a Github Pages
website (Van Boxel, 2023). These tools enable new users and developers to quickly
understand, use, and improve on the BARN algorithm for data science projects.

3.4 Cross-Validated Tuning Via Scikit-Learn

BARN is implemented as a sklearn class, meaning we can use standard sklearn

methods like GridSearchCV to tune the hyperparameters for the best possible result.
Note that each additional parameter choice increases the computation time mul-
tiplicatively, so one should be mindful when considering the number of possible
hyperparameter values.

All arguments to BARN which accept different values can be tuned this way. In
Algorithm 2, we show an example that tunes the prior distribution mean value param-
eter, λ. Also, when using a method like RandomizedSearchCV, one should be careful to
supply appropriate distributions. Here, l takes discrete values, so we specify a discrete
Poisson probability distribution to sample from. Note, however, that this distribution
is only for cross-validation sampling of the prior parameters, not for BARN to use in
internal MCMC transitions.

3.5 Early Stopping Approaches

In machine learning, even when training some model over many iterations, it is com-
mon to stop the process early under some conditions. Typically, these involve checking

6

Fig. 1 Example tutorial output showing BARN may outperform OLS and even a much larger neural
network. Note this example uses no cross-validated tuning.

some error metric against held-out validation data (Gençay and Qi, 2001). If the met-
ric fails to improve, then one stops training in order to avoid overfitting to training
data. Given the MCMC-based training process of BARN, however, there are several
possibilities for such metrics.

In addition to the standard approach of checking validation error, we explore
alternatives measuring stability in the posterior. As the MCMC posterior is some
probability distribution, we can estimate it from our samples once we reach conver-
gence. If this estimate is stable, then we infer that convergence has been reached and
we can stop. One reasonable metric is the earth-mover distance (also known as the
one-Wasserstein metric (Solomon et al., 2014)) from one estimate of the distribution
to the next. In our case, this means evaluating the distribution of the number of neu-
rons in each network of the ensemble and setting a change threshold. Though some
researchers explored similar ideas (Durmus and Moulines, 2015), they focused more
on mixing rate. A similar though simpler heuristic is to simply check how many pro-
posed model transitions BARN accepted in the previous iteration. If the model has
converged, then the error rates are already low and it will be relatively difficult to
dislodge an existing model. Therefore, so long as a model continues to accept tran-
sitions, it advances to the next MCMC iteration, as Algorithm 3 details in Python.
By default, this method stops if less than 20% of the networks in the ensemble tran-
sitioned. A final, more rigorous alternative is to check not just the stationarity of the
MCMC calculation, but the complete convergence of batch means as well. The Rel-
ative Fixed-Width Stopping Rule constructs a t-stat to check recent convergence of

7

Algorithm 2 BARN CV Tuning Example using sklearn

from s k l e a rn import data s e t s
from s k l e a rn . mode l s e l e c t i on import GridSearchCV , RandomizedSearchCV
from barmpy . barn import BARN
db = data s e t s . l o ad d i ab e t e s ()
s c o r i ng = ’ neg root mean squared e r ro r ’

exhau s t i v e g r i d search
f i r s t make pro to type wi th f i x e d parameters
bmodel = BARN(num nets=10,

random state=0,
warm start=True ,
s o l v e r=’ l b f g s ’)

dec l a r e parameters to exhaus t over
parameters = { ’ l ’ : (1 , 2 , 3)}
barncv = GridSearchCV (bmodel , parameters ,

r e f i t=True , verbose=4,
s c o r i ng=sco r i ng)

barncv . f i t (db . data , db . t a r g e t)
print (barncv . best params)

randomized search wi th d i s t r i b u t i o n s
from s k l e a rn . mode l s e l e c t i on import RandomizedSearchCV
from s c ipy . s t a t s import po i s son
f i r s t make pro to type wi th f i x e d parameters
bmodel = BARN(num nets=10,

random state=0,
warm start=True ,
s o l v e r=’ l b f g s ’)

dec l a r e parameters and d i s t r i b u t i o n s
parameters = { ’ l ’ : po i s son (mu=2)}
barncv = RandomizedSearchCV(bmodel , parameters ,

r e f i t=True , verbose=4,
s c o r i ng=scor ing , n i t e r =3)

barncv . f i t (db . data , db . t a r g e t)
print (barncv . best params)

relative batch means, implying stationarity (Flegal and Gong, 2015). These are all
relatively quick to implement, so we make them available to users as a model callback.

In practice, however, we expect most data scientists to use the more common check
on the current model validation error than these other methods. In various evaluations,
we found most methods provide similar results (about a 20% reduction in computation
time), with validation error anecdotally being the most stable. We still expose them,

8

Algorithm 3 “Not Trans Enough” Early Stopping Callback

@staticmethod
def trans enough (s e l f , check every=None , s k i p f i r s t =0, ntrans=None) :

’ ’ ’
Stop ea r l y i f fewer than ‘ ntrans ‘ t r a n s i t i o n s

Skip the f i r s t ‘ s k i p f i r s t ‘ i t e r s wi thout check ing
’ ’ ’
i = s e l f . i
only check every so many , d e f a u l t every 10%
i f check every i s None :

check every = max(s e l f . n i t e r //10 , 1)
not an i t e r a t i o n to s top on
i f i == 0 or i % check every != 0 :

return None
i f i < s k i p f i r s t :

return None
de f a u l t minimum t r a n s i t i o n s to cont inue i s 20%
i f ntrans i s None :

ntrans = max(s e l f . num nets //5 ,1)
compare most recen t count o f accepted t r a n s i t i o n s
i f s e l f . n t r a n s i t e r [i −1] < ntrans :

raise JackPot # ear l y s topp ing f l a g

not only for their nominal purpose, but also as examples of generic custom model
callbacks that can affect the training procedure.

4 Evaluation

To see in what contexts barmpy is most useful, we analyze its error and timing metrics
in different situations. We focus on both a small case study with data from an active
problem in biology as well as a review of computation time on different synthetic data
sets.

Before discussing these results, we quickly note how covers a broad range of real
and synthetic data sets to show where BARN is most effective. In particular, their
analysis of specific synthetic data sets provides some of the most insight. Without
repeating the analysis there, we note that BARN does better than other methods on
problems where there is a strong functional nonlinear relationship like Friedman F2
or F3. So BARN may be practically appropriate as an approximation to a complex
system that cannot be easily directly modeled.

9

4.1 Case Study: Isotope Modeling

While runs BARN on a wide variety data sets, we focus here on one case study on
clumped isotope paleothermometry. The modeling problem itself is to predict car-
bonate clumped isotope thermometry, ∆47, as a function of temperature (Eiler and
Schauble, 2004). This is a calibration process; in practice one uses ∆47 as a surrogate
for historical temperature that was not measured (and therefore something invert-
ible like OLS is typically preferable). The ecological details are beyond the scope
of this paper, but there are various studies on this topic (Eiler and Schauble, 2004,
Román Palacios et al., 2022, Petersen et al., 2019). A recent study (Román Palacios
et al., 2022) demonstrated the effectiveness of a Bayesian least squares approach to
this data. Such a method uses a linear model as in OLS, but employs priors on the
estimated parameter values informed by earlier studies. BARN also uses priors but
on the model structure (by affecting the size of learned networks) rather than the
parameters directly.

As this data set is in a single variable, we can visually inspect the relationship
between temperature and ∆47. Figure 2 plots ∆47 against the inverse of squared
temperature, showing a strong linear relationship, though with some spread. Scien-
tists training models on this data need to be able to invert the model (i.e. change
∆47 = f(T) into T = f−1(∆47)) to predict historical temperatures. So even if BARN
outperforms other approaches, it will likely not replace linear methods on this par-
ticular problem. We focus on BARN’s performance on the data as an area of active
research.

Fig. 2 Apparent linear relationship between temperature and ∆47

10

In Figure 3 we inspect results on this “isotope” data set, and we see that BARN
performs well relative to the other methods. Note that the output has been rescaled
from the original for this calculation. BARN produces very similar results to OLS (test
RMSE about 0.298, 4% less than the next-best method’s error). This performance
does require a greatly increased computational cost, as we shall see in Section 4.2.
We caution, again, that our BARN analysis here is for demonstration only, as this
particular problem requires invertibility.

Fig. 3 Absolute RMSE boxplot of various methods on the isotope data set. BARN (with or without
tuning) and OLS have similar profiles, while other methods are significantly worse (but still rather
accurate; note log scale).

The state-of-the art in this area uses Bayesian linear models. We show Figure 4
to quickly compare existing methods with our approaches on a specific data split of
interest (hence why there are only point estimates of the error). Further, we note that
these are on the original data scales, hence why all the errors appear so much smaller
than in Figure 3. BARN appears to be in the same class of error levels as the best
linear approaches. BARN’s error is only about 1% higher than the best method (and
even closer for tuned BARN). This is especially interesting because the other nonlinear

11

methods we tested (the big NN and BART) actually perform significantly worse than
OLS and BARN when not using cross-validated tuning. It is possible that BARN is
able to simplify to an OLS-like model that is appropriate for this problem (which has
a single explanatory variable) where other nonlinear methods would require additional
training data for such a reduction. This demonstrates some of the adaptability and
broad applicability of BARN.

Fig. 4 Testing RMSE point estimates (only a single split performed) on ∆47 testing data for various
methods. BARN performs similarly to linear methods (Román Palacios et al., 2022) even when a big
NN and BART perform significantly worse. Note that methods used in this study (top six models)
reserve 25% of the training data for validation (hence why “OLS VALID” is separate from “OLS”).

4.2 Computational Costs of BARN

While described BARN’s performance in terms of error, here we consider the compu-
tational cost of running it. There can be a trade-off here. Some problems, like targeted
display advertising (Shah et al., 2020), benefit from speed of computation (at the
expense of accuracy); others, like medical imaging (Aggarwal et al., 2021), require very
low prediction error and are willing to invest computational resources to achieve it. To
assess BARN on this axis, we consider the data sets described in . While these data
sets are modest in size (about 1000 data points and 10 features), they are sufficient
to realize the differences in computation times, in seconds, shown in Table 1. These
times do vary across runs, but not to the extent of the order of magnitude differences
in times across methods.

12

In Figure 5, we see the relative computation times for our various methods on all
data sets. OLS, being only linear algebra, is always the fastest (hence the relative
time of 1). Next, training a single neural network with gradient descent takes 10 to
100 times as long (still less than a second on any given problem). BART is solidly
100 times slower than OLS, about 1 second of real time. Plain BARN is about 10,000
times slower than OLS, taking on the order of 10 seconds to a 1 minute on a given
problem. This is primarily due to the necessity of training new small neural networks
for all the MCMC iterations. While each one is very fast (close to 10 times faster
than the single big network), doing this for 200 MCMC iterations is a significant cost.
BART avoids this cost because it does not “train” in a traditional sense (i.e. it does
not set weights with the standard CART procedure), so the MCMC iterations are not
as computationally intense. On the face of it, BARN seems like it is very slow.

When we consider the methods with cross-validated hyperparameter tuning, how-
ever, we see that BARN is actually time-competitive with the other nonlinear methods.
Those methods are on the order of tens of seconds for this data. Now, from earlier
studies (), we know that plain BARN is nearly as accurate as BARN with tuning.
Yet plain BARN still produces lower error than BART or the big neural network even
when those methods are tuned. Looking at Figure 5 again, we see that plain BARN
takes about the same amount of relative time as other methods when those are tuned.
Those methods benefit significantly from such tuning, whereas BARN may be adapt-
able even without it. For situations requiring low testing error in regression, BARN is
time-competitive with other nonlinear algorithms.

Table 1 Mean training time in seconds over 40 trials of various methods on different data sets

Dataset BARN BARN CV BART BART CV Big NN Big NN CV OLS
cali small 70.315 3051.940 0.821 240.575 0.149 29.332 0.002
concrete 76.898 3418.810 0.494 148.01 0.066 20.202 0.002
crimes 270.220 14175.800 0.905 258.248 0.183 30.963 0.011
diabetes 16.364 2231.910 0.177 73.3536 0.035 9.663 0.002
fires 33.866 3302.060 0.168 78.0964 0.036 10.802 0.002
isotope 7.521 526.695 0.350 136.935 0.032 6.532 0.001
mpg 30.834 1923.640 0.170 66.4122 0.031 8.533 0.002
random 21.660 1117.350 0.574 146.616 0.039 15.839 0.002
wisconsin 58.132 3734.430 0.120 48.0919 0.043 7.964 0.002

We did explore various speedups to BARN. Recall that we chose to implement
BARN in a Scikit-Learn compatible way, including using their MLPRegressor class.
While this is convenient, it may not be the fastest NN implementation. So we also
implemented BARN using TensorFlow-based neural networks, including training these
NNs on GPUs (Abadi et al., 2015). For large neural networks, GPUs often provide a
5 times or better speedup from parallelism (Lind and Pantigoso Velasquez, 2019), but
with BARN, we found just the opposite. Because BARN typically uses tiny neural
networks, these map poorly to GPUs. Significant time, relative to the computation
cost, is lost simply moving data between CPU and GPU. Another improvement we
tried, however, was more helpful. Initially, we trained BARN networks using typical
gradient-descent style solvers common in machine learning and TensorFlow. But since

13

Fig. 5 BARN is comparable in time to other methods with cross-validation

we were using Scikit-Learn, we also had easily available quasi-Newton methods like
BFGS (Nocedal and Wright, 1999). At the scale of networks and data sets consid-
ered, we found switching away from gradient descent provided a 2 to 4 times speedup.
Understanding that this is problem dependent, however, we enable setting this param-
eter in the function and provide a sane default that selects based on network size. Such
techniques provide BARN with some speed enhancements, though more research in
this area is needed.

5 Conclusion

We reviewed the design and capabilities of the new Python package, Bayesian Additive
Regression Models in Python (barmpy). In addition to the favorable results of lower
error rates on benchmark data seen in , we found barmpy to be fast enough on rele-
vant problems. While it is an order of magnitude slower than BART, ARN does not
need hyperparameter tuning to do well, making it generally time-competitive. Still,
additional research into faster implementation of BARN would be beneficial. Tensor-
Flow wasn’t able to improve speeds, but another linear algebra library, one tuned for
many small matrices, might be appropriate. Or, BARN may benefit from an algorith-
mic change. For example, rather than learning weights via the neural network training
procedure, we could sample them directly as part of the MCMC process. This has the
downside of ignoring existing optimization approaches, but something similar works
for BART, so it may work here. Beyond direct metrics, we also emphasized the impor-
tance of accessibility for barmpy. This is why we chose to develop it in Python with
tight integration with Scikit-Learn. We meet the practitioners where they are. Like-
wise, we recognize the importance of self-teaching in learning new software. So we
provide not only the library itself, but supporting documentation and tutorials. Finally,

14

we consider some future additions to the package. As the name, barmpy, suggests, we
seek to support a generic model backbone, not just neural networks. Provided one can
(hopefully rigorously) supply transition and posterior probability methods, this ought
to be broadly applicable. For example, support vector machines may be a straightfor-
ward next backbone option to implement. All these implementation details and other
“extras” are necessary for enabling users to learn barmpy and employ it effectively.

Acknowledgments. I must thank both of my PhD co-advisors, Xueying Tang and
Cristian Román-Palacios, for their constant guidance and support. Prof. Tang provided
key mathematical insight and ensured ongoing statistical rigor. Prof. Román-Palacios
balanced this with practical machine learning advice as well as the perspective of a
research scientist.

Declarations

Competing Interests

This research was performed in part while employed by the Data Diversity Lab within
the School of Information at The University of Arizona.

Code Availability

The barmpy library is available in full on GitHub at https://github.com/dvbuntu/
barmpy.

References

Chipman, H.A., George, E.I., McCulloch, R.E., et al.: BART: Bayesian additive
regression trees. The Annals of Applied Statistics 4(1), 266–298 (2010)

Patel, K., Fogarty, J., Landay, J.A., Harrison, B.L.: Examining difficulties software
developers encounter in the adoption of statistical machine learning. In: AAAI, pp.
1563–1566 (2008)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,
D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow:
Large-Scale Machine Learning On Heterogeneous Systems (2015). https://www.
tensorflow.org/

15

https://github.com/dvbuntu/barmpy
https://github.com/dvbuntu/barmpy
https://www.tensorflow.org/
https://www.tensorflow.org/

Chollet, F., et al.: Keras. https://keras.io (2015)

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C.,
Agarwal, S., Slama, K., Ray, A., et al.: Training language models to follow instruc-
tions with human feedback. Advances in Neural Information Processing Systems
35, 27730–27744 (2022)

Bayesian additive regression networks

Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)

PyPi Maintainers: Python Package Index - PyPi. Python Software Foundation (2023)

Escamilla, E., Klein, M., Cooper, T., Rampin, V., Weigle, M.C., Nelson, M.L.: The
rise of github in scholarly publications. In: International Conference on Theory and
Practice of Digital Libraries, pp. 187–200 (2022). Springer

Chipman, H., McCulloch, R., Chipman, G.: Package ”bayestree” (2022). R package
version 1.4

McCulloch, R., Sparapani, R., Gramacy, R., Pratola, M., Spanbauer, C., Plummer,
M., Best, N., Cowles, K. Kate andVines: Package ”bart” (2024). R package version
2.9.6

Hornik, K.: The comprehensive r archive network. Wiley interdisciplinary reviews:
Computational statistics 4(4), 394–398 (2012)

Prado, E.B., Moral, R.A., Parnell, A.C.: Bayesian additive regression trees with model
trees. Statistics and Computing 31, 1–13 (2021)

Srinath, K.: Python–the fastest growing programming language. International
Research Journal of Engineering and Technology 4(12), 354–357 (2017)

Seabold, S., Perktold, J.: Statsmodels: Econometric and statistical modeling with
python. In: Proceedings of the 9th Python in Science Conference, vol. 57, pp.
10–25080 (2010). Austin, TX

Hunter, J.D.: Matplotlib: A 2d graphics environment. Computing in Science &
Engineering 9(3), 90–95 (2007) https://doi.org/10.1109/MCSE.2007.55

Van Boxel, D.: barmpy Documentation. GitHub (2023)

Baumer, B., Udwin, D.: R markdown. Wiley Interdisciplinary Reviews: Computational
Statistics 7(3), 167–177 (2015)

Brandl, G.: Sphinx documentation. http://sphinx-doc.org/sphinx.pdf (2021)

Gençay, R., Qi, M.: Pricing and hedging derivative securities with neural networks:

16

https://keras.io
https://doi.org/10.1109/MCSE.2007.55
http://sphinx-doc.org/sphinx.pdf

Bayesian regularization, early stopping, and bagging. IEEE transactions on neural
networks 12(4), 726–734 (2001)

Solomon, J., Rustamov, R., Guibas, L., Butscher, A.: Earth mover’s distances on
discrete surfaces. ACM Transactions on Graphics (ToG) 33(4), 1–12 (2014)

Durmus, A., Moulines, É.: Quantitative bounds of convergence for geometrically
ergodic markov chain in the wasserstein distance with application to the metropolis
adjusted langevin algorithm. Statistics and Computing 25, 5–19 (2015)

Flegal, J.M., Gong, L.: Relative fixed-width stopping rules for markov chain monte
carlo simulations. Statistica Sinica, 655–675 (2015)

Eiler, J.M., Schauble, E.: 18o13c16o in earth’s atmosphere. Geochimica et Cosmochim-
ica Acta 68(23), 4767–4777 (2004)

Román Palacios, C., Carroll, H., Arnold, A., Flores, R., Petersen, S., McKin-
non, K., Tripati, A., Gan, Q.: Bayclump: Bayesian calibration and temperature
reconstructions for clumped isotope thermometry. Authorea Preprints (2022)

Petersen, S.V., Defliese, W.F., Saenger, C., Daëron, M., Huntington, K.W., John,
C.M., Kelson, J.R., Bernasconi, S.M., Colman, A.S., Kluge, T., et al.: Effects of
improved 17o correction on interlaboratory agreement in clumped isotope calibra-
tions, estimates of mineral-specific offsets, and temperature dependence of acid
digestion fractionation. Geochemistry, Geophysics, Geosystems 20(7), 3495–3519
(2019)

Shah, N., Engineer, S., Bhagat, N., Chauhan, H., Shah, M.: Research trends on
the usage of machine learning and artificial intelligence in advertising. Augmented
Human Research 5, 1–15 (2020)

Aggarwal, R., Sounderajah, V., Martin, G., Ting, D.S., Karthikesalingam, A., King,
D., Ashrafian, H., Darzi, A.: Diagnostic accuracy of deep learning in medical
imaging: a systematic review and meta-analysis. NPJ digital medicine 4(1), 65
(2021)

Lind, E., Pantigoso Velasquez, Ä.: A Performance Comparison Between CPU And
GPU In TensorFlow (2019)

Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, ??? (1999)

17

	Introduction
	Mathematical Background
	Library Features
	Design Considerations
	Regression and Binary Classification
	Improving Software Accessibility
	Cross-Validated Tuning Via Scikit-Learn
	Early Stopping Approaches

	Evaluation
	Case Study: Isotope Modeling
	Computational Costs of BARN

	Conclusion
	Acknowledgments

