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Abstract

We apply Bayesian Additive Regression Tree (BART) principles to training an ensemble of small neural
networks for regression tasks. Using Markov Chain Monte Carlo, we sample from the posterior distribution of
neural networks that have a single hidden layer. To create an ensemble of these, we apply Gibbs’ sampling to
update each network against the residual target value (i.e. subtracting the effect of the other networks). We
demonstrate the effectiveness of this technique on several benchmark regression problems, comparing it to
equivalent shallow neural networks, BART, and ordinary least squares. Our Bayesian Additive Regression
Networks (BARN) provide more consistent and often more accurate results. On test data benchmarks,
BARN averaged between 5% to 20% lower root mean square error. This error performance does come at
the cost, however, of greater computation time. BARN sometimes takes on the order of a minute where
competing methods take a second or less. But, BARN without cross-validated hyperparameter tuning takes
about the same amount of computation time as tuned other methods. Yet BARN is still typically more
accurate.
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1. Introduction

In recent years, methods like Bayesian Additive Regression Trees (BART) have shown themselves capa-
ble of producing low prediction error on benchmark machine learning problems. BART uses an ensemble of
decision trees, where each one is iteratively updated by sampling from a posterior distribution [4]. BART
originally proved superior to modest neural networks in its time. Today, however, Neural Networks have
come to the forefront of machine learning research [24]. Thus, we consider adapting the MCMC optimiza-
tion tactics of BART into Bayesian Additive Regression Networks (BARN) in order to model even more
accurately.

One powerful generalization of BART adapted it to a much broader set of problem types, not just
regression and binary classification [15]. Standard BART relies on the particular structure of certain loss
functions having closed-form posterior integrals in order to avoid the dimension changing from tree to tree.
In a more recent study applying BART generically to problems like classification and count prediction,
however, no closed form is required. The dimension changes as expected, but they account for this with
Reversible Jump Markov Chain Monte Carlo (RJMCMC) [10]. With decision trees, it’s possible to account
for this in a general way (aided by considering only data points that bin into a particular leaf node). This
expands the BART approach to new classes of machine learning problems.

One limitation, however, of using decision trees as the ensembled component in BART is that its output
is inherently stepwise. That is, small changes in the input vector can lead to discontinuous changes in
output. Even with an ensemble of trees and sampling over the posterior, the prediction function is not, in
general, continuous. SoftBART addresses this by treating tree splits as random rather than deterministic
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[16]. They note that this complicates the fitting procedure as SoftBART computes likelihoods over all leaf
nodes rather than a single one. Another alternative to this is Model Trees BART (MOTR-BART) [20].
Here, one replaces the constant leaf output values with a small linear function of the inputs. MOTR-BART
still has stepwise output, but it is stepwise linear rather than stepwise constant. And as this output is linear,
the posterior still has a closed form via a Gaussian integral. MOTR-BART also helps reduce the number
of trees. Each MOTR-BART tree can capture linear behavior, not just constant behavior. But in either
model, the output can be continuous, matching many real problems we would like to model.

While neural networks dominate popular thinking in machine learning, especially with user interfaces
like ChatGPT (and its predecessor, InstructGPT) [19], they have proven themselves in a variety of research
contexts as well. In computer vision, for example, convolutional neural networks can provide not only high
accuracy classification, but also a degree of explainability of portions of images that represent a particular
class via techniques like Grad-CAM [25]. Researchers also make neural networks work together in ensembles.
An interesting example of dynamic weighting of multiple networks helped address weather forecasting [17].
Such ensembling continues to see applied use more recently as well [18, 1, 26]. From all this, we can see that
neural networks are a competitive algorithm in the ecosystem of machine learning approaches.

Decision trees as a backbone for BART are attractive because of the statistical rigor of a fully specified
closed-form posterior. But with the increased demonstration of machine learning capabilities of neural
networks [24], we go beyond MOTR-BART’s extension of linear outputs [20] and replace decision trees
entirely with neural networks. Using neural networks in this way changes the posterior calculation to no
longer have a closed form. But we can still approximate the posterior and empirically evaluate such Bayesian
Additive Regression Networks.

To adapt BART this way, we replace the standard posterior analysis with a revised one. We refer readers
to Linero [15] for a detailed understanding of the MCMC fitting process of BART in a generic model-agnostic
way. This provides background for Section 2, wherein we detail how BARN uses a MCMC fitting procedure
inspired by BART. To show this empirically, Section 3 compares BARN against BART and other methods
on some benchmark data sets. From this, we will see that BARN is highly adaptable and often more accurate
than other regression methods.

2. BARN Model

We adapt the BART procedure [4], replacing the ensemble of decision trees with an ensemble of neural
networks. Each neural network has a single hidden layer. That is, we train the ensemble such that ŷi =∑

k Mk(xi), where Mk is the kth neural network with some number of neurons and one hidden layer. In
principle the model can be arbitrarily more complicated, but we retain this structure to simplify MCMC
calculations, reduce computation time, and limit model overfitting. Due to the similarities with BART, we
call our procedure Bayesian Additive Regression Networks (BARN).

At a high level, we propose architectural changes to a single model, Mk, at a time by computing the
current residual, Rk = Y −

∑
j ̸=k Mj(X). This single model change enables us to condition on the fixed

models, Mj ̸=k, to effect Gibbs sampling. Each MCMC step proposes a modification to Mk’s architecture,
trains this new model on (Rk, X), and computes an acceptance probability, A. Note that because we
determine the number of neurons within each network via the MCMC acceptance/rejection, this process
implicitly performs a neural architecture search. Additionally, we fix the number of models in the ensemble
as N . The MCMC procedure only modifies existing networks in the ensemble.

To do such modifications with detailed balance, we need the three components of the acceptance prob-
ability, A. For the transition probability, T (M ′,M), we have some flexibility. While a “tilted” distribution
would provide faster convergence, it also relies on more knowledge of the target distribution. As we gen-
erally lack such knowledge, we adopt a simple transition rule based on the number of neurons m′ and m
in the hidden layer of models M ′ and M . Equation (1) specifies the probability of shrinking or growing a
network by exactly 1 neuron. In our analysis, we set p = 0.4 as the growth transition probability. This
helps regularize the networks to be small, helping avoiding overfitting. Finally, note that we do not allow
networks to have m = 0 neurons; such transitions are always rejected.
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T (M ′,M) =

{
p m′ = m+ 1

1− p m′ = max(1,m− 1)
(1)

Note that we do not consider the weight values themselves in this calculation; doing so would require
handling dimensionality changes (i.e. with reversible jump MCMC [10]). And it would require some judg-
ment or heuristic a priori about how the weights should change, independent of the training process. Also,
with BART, the distribution of terminal node weights directly leads to a distribution on whole ensemble
predictions (as the ensemble is a sum of these known terminal node distributions) [4]. In a neural network,
however, computing the distribution of the output is more involved. Even if there is a distribution on
weights, the distribution of input values is also required. And interaction between neurons is not indepen-
dent, as they will have been trained with a traditional optimization. But such optimization is well studied
and experimentally proven to be reliable [13] for neural networks, so we maintain such an approach for
BARN. The rest of the procedure, however, mimics the BART MCMC approach.

When transitioning from M to M ′, we can make use of the already learned weights of M . If m′ = m+1,
then we transfer the old weights to the new model and randomly initialize the new neuron weights. This
retains previously learned information so the new model need not train exactly from scratch. Similarly, if
m′ = m− 1, then we retain the weights of the first m− 1 neurons. Note, however, that these serve only as
the initial weights for the network.

Once the transition has been proposed and initial weights set, we can train this proposed network on
the current training residual, Rk, and X. Note that one can use any number of neural network optimization
methods; for simplicity we use the BFGS optimizer [7] with a maximum of 100 iterations (though this forms
an additional hyperparameter to the BARN procedure).

Again, we reiterate that the development of a proposed replacement neural network, M ′, is a two step
process. First we mutate the architecture by adding or subtracting a node, m′ = m± 1. And only then do
we train the resulting architecture, informed by the original model weights, on the target residual, Rk. This
produces a new set of weights, w′

k, associated with M ′, and a new set of model predictions, M ′(X,wk).
What remains is the posterior, comprised of the evidence and the prior. Recall that in BART, this is

an integral over all possible output values for the given leaf. The BARN posterior breaks up in a similar
way. The model node count prior, P (M), does not depend on the weights, so it comes out of the integral.
What remains within the integral are the error likelihood (i.e. evidence for the model) and the weight priors,
seen simplified in Equation (2) and expanded with the normal error as well as flat weight assumptions in
Equation (3).

P (Rk|M) =

∫
P (Rk|Mk, w)P (w)dw (2)

P (Rk|M) =

∫
exp( (Rk−Mk(X,w))2

−2σ2 )
√
2πσ2

1dw (3)

Now we come to an issue. In BART or MOTR-BART, the analogous component is constant, or at
least linear, in both cases lending itself to a closed-form integral [4, 20]. But Mi(X,w) is a complicated
nonlinear function of various wk weights, so we lack such a form. If we do away with the integral and
make the weight sampling part of the MCMC algorithm, then the dimension of each model varies, requiring
RJMCMC. Generalized BART handles something similar with reversible jumps, but they take advantage of
the decision tree structure to again find a general closed form even under dimension change. The weights of
a neural network, however, come from an involved training process, in our case BFGS. This makes obtaining
a Jacobian for RJMCMC infeasible. We cannot compute a BARN posterior this way.

Instead, consider an approximation to the integral over weights. In neural networks, not unlike decision
trees, certain weights produce much higher probabilities. That is, most of the probability mass for a given
weight concentrates around a particular value. Additionally, swapping neuron positions (e.g. w2i → w2i+1

and vice versa) produces numerically equivalent neural networks. These equivalent NNs must therefore have
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multiple strong peaks in the multivariable probability density curves. Therefore, we approximate the integral
itself with the likelihood of the peak (i.e. the integrand at the given weight values). This does introduce
a potential scaling issue, but because we take a ratio of likelihoods (for the old network and the proposed
network), these scales should cancel out, leaving us the approximate probability ratio. So we replace the
integral of Equation (2) with the approximate Equation (4).

∫
P (Rk|X,Mk)dw ≈

∏
j∈valid

e
− 1

2

(
(Rk−Mk(Xj))

σ

)2

σ
√
2π

(4)

Note that to compute this error likelihood, we apply the models to held-out data (but not the test data),
else models may quickly overfit (an open question is if a prior on the error itself can better control overfitting
without a held-out data set). This component then goes into the calculation of the acceptance ratio, A.

Next, we still need to specify a prior, P (M), based on the neural network architecture as well as its
learned weights. But as the weights can vary considerably depending on data, we restrict our prior to the
size of the network. While different domains may propose different priors, we again want to encourage
relatively small models. To that end, we encode a model’s prior with a Poisson distribution on the count
of neurons in its hidden layer. We choose λ = 1 as the mean of a Poisson distribution after empirically
testing a few options (note that we explore more detailed cross-validation for hyperparameter selection in
Section 3.1). So a model, M , with m neurons has prior probability:

P (M) =
λme−λ

m!
(5)

Finally, we combine the transition, evidence, and prior components into the acceptance ratio calculation.
Equation (6) shows this for proposing a transition to M ′

k from Mk with a residual of Rk.

A(Mk,M
′
k) = min

(
1,

T (Mk|M ′
k)P (Rk|X,M ′

k)P (M ′
k)

T (M ′
k|Mk)P (Rk|X,Mk)P (Mk)

)
(6)

Recall that the residual in Equation (4) are sufficient to replace the contribution from all of the frozen
models in the ensemble. When we fix those models and subtract their effect to obtain the residual, we are
implementing a form of Gibbs sampling. That is, we approximate P (Y |X,M1,M2, · · · ) as in [4] (i.e. the
entire distribution given all the models, not just the particular model). Additionally, we sample the model
error, σ, exactly as is done in BART, using an inverse gamma distribution. By iterating through the models
in this fashion, we develop better and better approximations to the posterior. After some burn-in period,
the distribution of models reflects the posterior given the available architectures and the data. We can then
sample one (as for point inference) or more sequences of MCMC ensembles (as for intervals) as the model
output.

3. Method Evaluation

We first assess the performance of BARN on benchmark regression problems that have been previously
used in studies examining the performance of newly-developed methods. Then, we examine how BARN and
competing methods perform on a series of controlled synthetic data sets. This allows us to see how BARN’s
performance changes in response to specific parameters like increasing noise or number of irrelevant features.

3.1. Model Evaluation Setup

To test the effectiveness of BARN, we train ensembles against nine benchmark regression problems and
compare its error to that of existing regression techniques. Seven of the data sets analyzed in this study
are freely available from the UCI Machine Learning repository [6], one is from a recent study [23], and the
last is a randomly generated linear regression problem with eight relevant and two irrelevant variables. We
compare BARN against BART which previously performed very well on some of these data sets [2]. Table 1
shows the size of each data set in features and data points.
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Table 1: Representative data sets for testing BARN

Dataset Features Data Points
boston 13 506
concrete 9 1030
crimes 101 1994
diabetes 10 442
fires 10 517
isotope 1 700
mpg 7 398
random 10 1000
wisconsin 32 194

While these data sets provide a diverse set of problems on which to test BARN, we also implement
a variety of synthetic data sets for additional testing. We generate this data by starting with different
functional relationships, such as a randomly initialized linear relationship yi = βxi. Another function is
pairs of indices of discrete clusters in the input space. We also extend the clusters by training a random
forest on the indices and using its prediction as output. Finally, we have three multivariate functions from
Friedman [8]. F1 is a 5-dimensional combined polynomial/trigonometric function used to evaluate BART
[4]. F2 is a function involving products and reciprocals. Finally, F3 is similar to F2, but it is put through
an arctangent function. We summarize these in Equation (7) - Equation (9). This diversity of relationships
provides linear, nonlinear, and discontinuous data sets for modeling.

F1(X) = 10 sin(πX1X2) + 20(X3 − 1/2)2 + 10X4 + 5X5 (7)

F2(X) =
√

X2
1 + (X2X3 − 1/(X2X4))2 (8)

F3(X) = arctan

(
X2X3 − 1/(X2X4)

X1

)
(9)

(10)

To further diversify our synthetic data, we perturb the output by adding varying amounts of noise
(measured by signal-to-noise ratio, or SNR), adding extra irrelevant features to the X vector, or changing
the number of overall features. This creates problems of different complexity and challenge on which to test
our methods. For more detail on this synthetic testing, Table 2 is a summary.

Table 2: Synthetic Data Generation Parameters

Factors Options
Functional Relationship Cluster, Forest, Friedman (1-3), Linear
SNR 10, 1
# Relevant Features 100, 10
% Irrelevant Features Added 90%, 10%

For each data set, before training with our various algorithms, we do minimal preprocessing. For better
comparison across data sets, we rescale outputs to be have mean 0 and variance 1. For input variables,
we perform a principal component analysis (PCA) with the number of dimensions equal to the number of
features (i.e. decorrelating but retaining all information). As we know neural networks benefit from this
input transformation [14], we allow this step for all models as would be done in practical applications.

Now we specify the parameters needed for BARN. We set the number of networks in the ensemble to
a small number, 10, even though BART recommends 100-200 trees [4]. Using only 10 networks instead
of 100 helps reduce computation time since we have to train each network at every step. We also briefly
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tested using BARN with a single neural network as a form of architecture search. This generally resulted in
slightly worse models (about 2% worse RMSE than ensembled BARN of equivalent size), so we retain the
ensemble approach. And as noted in Section 2, our growth transition probability is p = 0.4, and the prior
on model size is a Poisson distribution with λ = 1 neuron. For training the NNs, we use BFGS optimization
with up to 100 iterations and include a small L2 regularization penalty of 0.001 on the weight magnitudes.
To initialize the networks, we set the initial neuron count to 1 for all of them (mimicking BART’s starting
point of single node trees [4]), and train them each independently on Y/10 (i.e. assume they all contribute
equally to the result). We run BARN for potentially 200 iterations, always doing at least 20. This is similar
to the Keras EarlyStopping callback [5]. Every five steps, we check the validation error for improvement.
If it gets worse by more than the tolerance, 0.0001, we stop training early per standard machine learning
practice [9]. This helps ensure that models have converged. We accept the ensemble at the end of this
procedure as the final one for testing.

To confirm that these MCMC parameters are acceptable, we apply a simple batch means analysis test.

In our case, we measure ϕt =
√∑

i
(yi−Mt(xi))2

n , the RMSE of the ensemble at each iteration, t. As we

use the validation data for the acceptance testing, we also use it for this residual. Even with our modest
amount of training, these values tended to be less than 1% the size of the RMSE variance across ensembles in
independent runs, so we have some confidence that this level of burn-in is sufficient. Additionally, Figure 1
shows a typical error progression indicating convergence in RMSE. This type of convergence is often checked
for “early stopping” of an algorithm [21]. Note that the RMSE converging means the error of the ensembles
has converged, not that the parameters such as weights have converged within the MCMC. Because the
networks transition, we don’t necessarily expect the weights themselves to converge to a value. Finally,
we are most interested in error estimates across data sets, so we limit discussing details about confirming
convergence to just the overall RMSE approach.

Figure 1: Typical error results for one of the data sets during the MCMC process shows burn-in achieved within the full run

For comparison to BARN, we train a single large neural network, a large BART forest, and an OLS
model. For the large neural network, we retain a single hidden layer, but we set the number of neurons
equal to the total neuron count in the BARN ensemble. Such a network has the same number of weights
((number of inputs+1) × number of neurons). We train this network for 2000 epochs using the same
optimization and regularization parameters as used in BARN. For BART, we run with default parameters
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with wbart in the BART package (100 trees, k = 2, ν = 3, q = 0.99) as those have been shown to perform
well [4]. This already encourages small trees, and BART is fast enough that the default burn-in of 1000
iterations is sufficient and computable. This provides three alternatives against which to evaluate BARN.

For each method (excluding OLS), we also test a version of it with five-fold cross-validated hyperparam-
eter tuning (denoted with “CV” in tables and figures). For BARN, we explore choices for the prior mean
of the model size, λ; the number of networks in the ensemble; and the activation function in the neural
network. With two options for each, we have a total of eight configurations to test on each of five folds.
For BART, we fix the number of trees at 100, but we vary k, ν, and q for a total of 12 combinations. With
the single large neural network, we consider model sizes in different multiples of the BARN-derived size,
different learning rates, number of epochs, and like BARN, two options for the activation function. Table
3 summarizes the options for each method. In all cases, we select the set of parameters with the smallest
root mean square error.

Table 3: Hyperparameter options for cross-validated methods

Method Parameter Values

BARN n, Number of Networks 10, 20
λ, Poisson Mean Number of Neurons Prior 1, 2
NN Activation Function Sigmoid, ReLU

BART k, standard deviation prior on σµ 1,2,3,4,5
(ν, q), priors on σ ((3,0.9), (3,0.99), (10,0.75))

Big NN BARN neuron count multiplier 1, 2, 10
lr, Adam initial learning rate 1e-5, 1e-4
Number of epochs 2000, 4000
NN Activation Function Sigmoid, ReLU

For each data set, we perform 40 random trials with each type of model. In each trial, we randomly
split the data into 50% training, 25% validation (for early stopping checking), and 25% testing, using the
same split across model types for consistency. After completion, we compute the average RMSE of the test
predictions.

3.2. Benchmark Results

Table 4 shows the mean RMSE for each data set and model. We summarize this across data sets into
the relative RMSE in Figure 2, and we compile the median points for both absolute and relative RMSE into
Table 5, along with pooled sample standard deviations. Each point in Figure 2 is the test RMSE of that
method divided by the test RMSE of the best method for that particular data split. Additionally, Table 6
shows the maximum relative error seen for each model and data set. Note that for BARN, the forest fires
data set is the only one with relative error large enough to contain the more severe outliers in Figure 2.
Finally, Figure 3 display R2 values of methods averaged across data sets, with error bars showing the pooled
variance estimate. Because different data sets have different amounts of noise, we expect them to have
different mean R2 values. By using pooled variance, that is, the variance about each mean, we can estimate
the variance expected in a typical data set. Ignoring this and using sample variance would artificially inflate
the error bars. From these metrics, we see that BARN appears to have generally lower relative error and
better fit across data sets.

For the synthetic data sets, we perform a similar analysis. Here, we focus on how changing each parameter
affects the results. We do, however, include the overall relative error and R2 in Figure 4a, where BARN again
outcompetes alternatives. For more detail, we have a set of subplots for each of the variants in Figure B.6
in Appendix Appendix B. Across all of these, we can further inspect BARN’s robustness.

By examining a broad cross section of real and synthetic data, we can compare BARN to other methods
in highly variable situations. Some of these, like the forest fires data set, have non-normal error terms.
Others, like the Wisconsin breast cancer set, have a very limited amount of data available for training and
testing. What’s more, we see from the synthetic data how BARN responds to changing the amount of noise
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Table 4: Mean scaled RMSE over 40 trial with smallest mean error in bold for each data set

Data set BARN BARN CV BART BART CV Big NN Big NN CV OLS
california 0.513 0.495 0.524 0.498 0.857 0.566 0.558
concrete 0.375 0.367 0.533 0.462 6.266 0.702 0.631
crimes 0.622 0.627 0.708 0.649 0.736 0.599 0.614
diabetes 0.734 0.745 0.807 0.791 0.721 0.724 0.719
fires 1.494 1.441 1.358 1.221 4.088 1.130 1.113
isotope 0.299 0.298 0.327 0.315 0.322 0.329 0.299
mpg 0.354 0.361 0.480 0.454 19.539 0.461 0.408
random 0.073 0.074 0.386 0.179 0.096 0.089 0.068
wisconsin 1.123 1.097 1.104 1.058 9.028 1.024 1.189

Figure 2: BARN is more adaptable to different problems than other methods and outperforms them across data sets

and presence of many features (irrelevant or not). As visible in the figures, BARN appears competitive with
other methods, often outperforming or matching the next-best method.

3.3. Discussion

Based on these visualizations, we see that BARN tends to have lower testing error than shallow neural
networks, BART, and OLS across data sets. We choose to recompute BART results rather than using those
in Biau et al. [2] in order to maintain data set and data split consistency. The results in Table 4 show BARN
is often the best performing, with either BARN or tuned BARN (“BARN CV”) having the lowest RMSE in
four of nine data sets. In two of these, california and isotope, however, other methods like tuned BART or
OLS were within 1% of BARN’s error. Note that it is possible for the non-cross-validation version to have
lower testing error, as the model selection is done on training data. The relative RMSE shown in Figure 2
displays even more clearly how BARN adapts well across a variety of problems, with BARN having tighter
and lower errors than other methods. Table 5 makes this quantitative; on real data we see that BARN (even
without tuning) has a median testing error about 13% lower than the next-best method, which is tuned.
While BART or OLS may dominate a particular problem, BARN has the smallest relative error across data
and a much tighter interquartile range. It does have a seemingly large number of outliers (similar to BART
without tuning), but Table 6 indicates that these large errors come from the forest fires data set, as the
maximum relative error for BARN on other data sets is smaller than the outliers. In the forest fire data set,

8



Table 5: Median test RMSE, relative RMSE, and pooled standard deviation across types of data sets, excluding forest fires
data

Data set, metric BARN BARN CV BART BART CV Big NN Big NN CV OLS
Real, Median 0.390 0.383 0.517 0.477 0.732 0.570 0.562
Real, pooled σ 0.071 0.057 0.056 0.056 9.634 0.070 0.059
Real, rel, Median 1.016 1.014 1.168 1.117 1.409 1.170 1.089
Real, rel, pooled σ 0.096 0.062 0.391 0.156 25.789 0.173 0.079
Synth 0.788 0.761 0.881 0.847 0.873 0.791 0.780
Synth, pooled σ 0.083 0.082 0.068 0.073 0.078 0.118 0.059
Synth, rel 1.050 1.026 1.206 1.158 1.207 1.053 1.060
Synth, rel, pooled σ 0.098 0.089 0.107 0.105 0.115 0.253 0.084

Table 6: Maximum Relative RMSE for each modeling method and data set

Data set BARN BARN CV BART BART CV Big NN Big NN CV OLS
california 2.31 1.09 1.21 1.11 10.96 1.34 1.32
concrete 1.17 1.13 1.72 1.55 76.37 3.28 1.94
crimes 1.04 1.06 1.23 1.09 1.40 1.00 1.04
diabetes 1.19 1.44 1.29 1.25 1.10 1.15 1.07
fires 6.34 6.34 3.36 2.09 25.94 1.99 1.21
isotope 1.00 1.00 1.15 1.08 1.28 1.82 1.00
mpg 1.10 1.40 1.67 1.57 354.35 1.76 1.37
random 1.24 1.36 7.82 3.40 1.98 1.86 1.01
wisconsin 1.39 1.39 1.36 1.36 48.79 1.26 1.56

the target value is the area of forest burned in a given time period. Many periods have zero, while others
vary, making it zero-inflated or zero-censored data. Other methods also face challenges with this data, but
not always as severely. Finally, Figure 3 again shows how BARN finds better fits (in both training and
test data) than other approaches. BARN, tuned or not, has about mean 0.6 R2, while the next highest is
tuned BART at 0.58. These R2 values, however, are within the pooled standard deviation, close enough to
not be significantly different. So although BARN is not universally superior, there is a broad spectrum of
situations in which it noticeably outperforms existing methods and may be more generally robust.

We also call out some potential peculiarities in this analysis. First, the large single NN, without cross-
validated tuning, performed very poorly on the real data, with median relative testing error over 50% higher
than BARN. The available default parameters often failed to converge on various problems, leading to
extremely poor results (e.g. “going off the edge of the plot” in Figure 2). While one could devote more
effort to finding better defaults, from the cross-validated tuning, we see that it can perform reasonably well.
And generally, one set of parameters may not transfer well between problem domains. For BARN, however,
cross-validated tuning provides very little advantage. The view in Figure 3 perhaps makes this most clear.
There is a small boost in training R2 with BARN CV (about 0.07 higher than plain BARN), but this does
not lead to much of a boost in testing R2 (less than 0.01 improvement). This increase is perhaps just enough
to edge out the default parameters as seen in Table 4, but that tuning may not worth the effort. Both BARN
CV and regular BARN are have R2 values well within a pooled standard deviation of each other. Cross-
validation on BARN set the mean model size prior to be λ = 1, which was the default choice, about 85% of
the time. Combining these observations about BARN and the large NN provides an additional insight. A
BARN ensemble of shallow neural networks can be trivially rewritten as a single neural network that takes
a weighted sum of all the neurons in all the networks. That is, they are structurally identical. Yet, BARN’s
training procedure provides it with robustness comparable to that of cross-validation for the the large NN.
Large NNs have the opportunity to numerically duplicate BARN’s results, but BARN is generally superior.

Using the synthetic data sets, we see similar behavior in BARN. As Figure 4a shows, BARN again has
a small relative test RMSE across data sets. We observe two additional points here. First, cross-validated
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Figure 3: BARN resists overfitting similar to other methods when comparing R2 values across training and testing data with
pooled variance

hyperparameter tuning does have a modest impact on BARN (about 0.01 improvement on testing data),
though perhaps still less so than on other methods. Even without, BARN is competitive with other methods
that use such tuning. Its mean relative test RMSE was 1.1, and with tuning only 1.08. The next lowest
mean relative test RMSE belonged to the tuned NN at 1.15, about 5% worse than either BARN method.
Turning to Figure 4b, we can inspect how BARN handles overfitting on our synthetic data sets. It has a
similar amount of overfitting compared with other nonlinear methods, with an R2 about 0.3 lower on testing
data than training. Not surprisingly, OLS overfits less, with a decrease in R2 of about 0.2. But BARN,
with our without tuning, has the highest mean R2, though error bars overlap with tuned neural networks
and OLS. Overall, BARN still performs well on these synthetic sets.

Examining performance on specific sets, we find a few interesting and distinct results. For the cluster
and forest data sets (which mimic an underlying discontinuous relationship), BARN performs better than
other methods when there are more features and noise. Tuned BARN has a mean RMSE of about 0.8 in
these situations, whereas the competing methods are 0.9 or higher. The testing R2 reflects this as well,
where tuned BARN is about 0.35 (still poor, but higher than others). When SNR = 10 (i.e. low noise) for
these data sets, however, other approaches like neural networks have lower error and higher R2, indicating
that perhaps BARN has robustness in this situation, but may not be the most accurate when the problem is
easier. The Friedman data sets have somewhat different perspective. For F2 and F3, BARN seems better
overall, regardless of noise, feature count, or irrelevant features. With F1, it is only superior for SNR = 10
cases, especially when there are fewer irrelevant features. Note that this is the opposite of what we see
with the cluster and forest data. We speculate that the periodic nonlinearity of F1 is difficult for BARN
to track under noisy conditions. Finally, we note that in the linear data sets, OLS generally performs best,
as expected. More detailed subplots demonstrating these finds are available in Figure B.6. Having these
synthetic data sets where we know the underlying parameters enables to see that BARN is robust under a
variety of conditions where other approaches may have difficulty.
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From all these plots and analyses, we see that BARN is effective compared to other methods on many
different domains. We briefly note here, however, that this performance does take additional computation
time. While we save detailed discussion of timing results for another study, BARN without cross-validated
hyperparameter tuning takes comparable time to BART or neural networks with such tuning. Yet, even
the untuned BARN shows low testing errors in many situations. It brings together the strengths of both
BART-style MCMC model search and modern neural network implementation to produce a better machine
learning method.

4. Summary

Though Section 3 shows BARN to be competitive, there remains a significant amount of future work on
better theoretical understanding and practical implementation. Most of the theoretical advances relate to
more rigorous analysis of the MCMC components. For example, our selection of transition probabilities was
somewhat arbitrary. While this limitation was also in Bayesian CART [3] regarding tree growth and pruning,
a follow-up study on generalized BART derived rigorous normal distributions for transition probabilities [15].
We may be able to derive a similar distribution to improve convergence and reduce variance in the produced
models. Similarly, we need better justification for our model size prior. While a Poisson or negative binomial
distribution is probably sufficient, a heuristic to guide both the distribution and parameters would be helpful.
From cross-validation, we found a mean of λ = 1 for our Poisson prior was most common, so we recommend
this as a starting point. Next, we assumed the errors for each model are independently identically distributed
normal, but this is problem dependent. One can account for relaxations to this by modifying the P (Y |X,M)
expression, but it is not clear if we can derive an approximation for this similar to BART’s closed forms. And
finally, we should seek either an RJMCMC-compatible form of model proposal with changing dimensions or
a better justification for avoiding this. The approximation of Equation (4) was a start, but one may be able
to better account for changing likelihood functions. Alternatively, a fixed-dimension MCMC may become
feasible by setting a maximum network size and keeping most of the weights zero (effectively deleting most
of the neurons). Or, one might propose weights entirely via the MCMC process, completely eschewing
traditional weight optimization approaches entirely (as BART does). We believe our theoretical approach
is sound and confirmed by the experimental results, but this remains an open area of research.

On the applied side, there is also fruitful future research. Still somewhat theoretical, but with direct
applications, is a version of BARN suitable for classification problems. BART provides an approach to this
using binary probit [4], which we can adapt to BARN. Next, making BARN more accessible via simplified
software interfaces and additional languages will help it reach more researchers and data scientists. This also
means adapting BARN to a wider variety of backbones. To illustrate: BART uses decision trees and BARN
uses neural networks, but a generic Bayesian Additive Regression Model could use, say, support vector
machines (SVMs) [11]. SVMs, in particular, are attractive as they may have fewer dimension-changing
issues if a single type of kernel is considered. An alternative different application is to focus more on
the architecture search rather than the ensembling. If we restrict the number of networks to exactly one,
then BARN transition proposals and MCMC acceptance sample from the posterior on the total number
of neurons. With a single hidden layer in the neural net, such an approach may be less effective than
exhaustively trying many different neuron counts. But if we expand the neural network architecture to
allow proposing additional layers, or even different types of layers, such as convolutional ones in an image
processing context, a BARN-guided search may become more competitive than exhaustion or even genetic
algorithm methods [12]. Such extensions to BARN may make it more applicable on ever more diverse
problems.

We have shown BARN to accurately model a variety of regression problem domains. By adapting
the MCMC model sampling process of BART to modern neural networks, we employ the strengths of
both. Though our posterior is an approximation, empirical benchmarking shows how BARN can achieve
lower test errors on real data sets. We further demonstrate this effectiveness on synthetic data, setting
various parameters like noise and number of features, which are not controllable in real data. BARN may
take additional processing time, but it may not require much hyperparameter tuning, making its overall
computation time comparable to other methods like BART and pure neural networks. Therefore, BARN is
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a machine learning approach we should consider applying to new data science problems when seeking lower
error rates.

Code Availability

Software for running BARN in general is available under barmpy on PyPi [22]. Code specific to our
analysis is available on request to the author.

Acknowledgements

Danielle Van Boxel was supported as a Graduate Research Assistant advised by Dr. Cristian Román-
Palacios in the Data Diversity Lab within the School of Information at the University of Arizona. Dr.
Xueying Tang from the Department of Mathematics also provided technical advice as Danielle’s PhD co-
advisor. And Jennifer Van Boxel from Dicey Stories proof read an earlier version of this manuscript.

Appendix A. Benchmark Regression Posterior

Here we briefly review the neuron count distributions within the BARN ensemble on different types of
data. Figure A.5 shows the posterior distribution of neuron counts for both the tuned and untuned BARN
methods. In addition, we include on each graph the prior distribution (with the caveat that zero neurons
was never actually possible). For all but the concrete data set, the final distribution most often has a single
neuron in each network (about 80% of the time). The concrete data is highly nonlinear, so it not surprising
that BARN needs more neurons (2 to 4) per network to model this.

Appendix B. Synthetic Regression Details

We include some additional figures which go into more detail for individual data sets. Figure B.6 shows
the relative testing and training error results for each synthetic data set, organized by the factors that
comprise them.
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(a) BARN is adaptable, as seen on a variety of synthetic data sets

(b) R2 for synthetic training and testing data shows some overfit

Figure 4: BARN is competitive with other methods across data sets
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Figure A.5: Posterior distribution of neuron counts varies across data sets
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(a) Individual RMSE results, training and test

(b) Individual R2 results, both training and test

Figure B.6: Synthetic data results, grouped by data set and SNR level (heavy boxes), as well as number of features and
irrelevant features (interior division)
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